[1]
Lin Xiao, Bo Wang, Guang Yang, Mario Gauthier. Poly(Lactic Acic)-based Biomaterials: Synthesis, Modification and Applications. biomedical science, engineering and technology. s. l. : In Tech, 2012, pp.247-282.
DOI: 10.5772/23927
Google Scholar
[2]
Rafael Auras, Loong Tak Lim, Susan E. M. Selke, Hideto Tsuji. Polylactic acid synthesis, structure, properties, processing, and applications, Wiley, USA , (2010).
Google Scholar
[3]
Sheth, M. et al. Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol), Journal of applied polymer science, Vol. 66 (1997), pp.1495-1505.
DOI: 10.1002/(sici)1097-4628(19971121)66:8<1495::aid-app10>3.0.co;2-3
Google Scholar
[4]
Racha Al-Itry, K. L. A. M., 2012. l and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. polymer degradation and stability, Volume 97, p.1898-(1914).
DOI: 10.1016/j.polymdegradstab.2012.06.028
Google Scholar
[5]
Katrin GanB, A. N. K. F. K. S., 2012. difficulties in the use of ground bacterial cellulose as reinforcement of polylactid acid using melt-mixing and extrusion technologies. scientific research, Volume 2, pp.97-103.
DOI: 10.4236/ojcm.2012.23011
Google Scholar
[6]
M.A. Rodriguez-Perez, J. S. J., 2006. preparation and charaterization of poly(L-lactic acid) -Chitosan hybrid scaffolds with degu release capability. wiley interscience, pp.427-435.
Google Scholar
[7]
Maria Ann Woodruff, D. W. H., 2010. the return of a forgottenpolymer-polycaprolactone in the 21st centry. progress in polymer science, Volume 35, pp.1217-1256.
DOI: 10.1016/j.progpolymsci.2010.04.002
Google Scholar
[8]
Todo, M. T. T. T. H. A. K., 2007. fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. engineering fracture mechanics, Volume 74, pp.1872-1883.
DOI: 10.1016/j.engfracmech.2006.05.021
Google Scholar
[9]
N. Lopez-Rodriguez, A. Lopez-Arraiza, E. Meaurio, J. R. Sarasua. Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends, POLYM. ENG. SCI., Vol. 46 (2006), pp.1299-1308.
DOI: 10.1002/pen.20609
Google Scholar
[10]
M. E. Broz, D. L. VanerHart, N. R. Washburn. Structure and mechanical properties of polyD, L-lactic acid/ polycaprolactone blends, Biomaterials, Vol. 24 (2003), pp.4181-4190.
DOI: 10.1016/s0142-9612(03)00314-4
Google Scholar
[11]
Todo, M., Takayama, T., Tsuji, H. Arakawa, K. Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends, Engineering fracture mechanics, Vol. 74 (2007), pp.1872-1883.
DOI: 10.1016/j.engfracmech.2006.05.021
Google Scholar
[12]
Boo Yong Shin, Do Hung Han. Compatibilization of immiscible polylactic acid/ polycaprolactone blend through electron beam irradiation with the addition of compatibilizing agent, Radiation physics and chemistry, Vol. 83 (2012), pp.98-104.
DOI: 10.1016/j.radphyschem.2012.10.001
Google Scholar
[13]
Tatiana Patricio, Paulo Bartolo. Thermal stability of PLA/PLA blends produced by physical blending process, Procedia engineering , Vol. 59 (2013), pp.292-297.
DOI: 10.1016/j.proeng.2013.05.124
Google Scholar
[14]
Jen-Taut Yeh, Ching-Ju wu, Chi-Hui Tsou, Wan-Lan Chai, Jing-Dong Chow, Chi-Yuan Huang, Kan-Nan Chen, Chin-San Wu. Study on the crystallization, miscibility, morphplogy, properties of polylactic acid/polycaprolactone blends, Polymer plastics technology and engineering , Vol. 48 (2009).
DOI: 10.1080/03602550902824390
Google Scholar
[15]
Wisam H. Hoidy, M. B. A. E. A. J. A. -M. N. A. B. I., 2010. preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites. Volume 10.
Google Scholar
[16]
Maria Ann Woodruff, D. W. H., 2010. the return of a forgottenpolymer-polycaprolactone in the 21st centry. progress in polymer science, Volume 35, pp.1217-1256.
DOI: 10.1016/j.progpolymsci.2010.04.002
Google Scholar
[17]
Tatiana Patricio, P. B., 2013. thermal stability of PCL/PLA blends produced by physical blending process. procedia engineering, Volume 59, pp.292-297.
DOI: 10.1016/j.proeng.2013.05.124
Google Scholar