[1]
P. M. Perillo and D. F. Rodríguez: A room temperature chloroform sensor using TiO2 nanotubes. Sensors and Actuators B Vol 193 (2014), p.263– 266.
DOI: 10.1016/j.snb.2013.11.075
Google Scholar
[2]
P. Ncube, R. W. M. Krause, and B. B. Mamba: Detection of chloroform in water using an azo dye-modified b-cyclodextrin – Epichlorohydrin copolymer as a fluorescent probe. Physics and Chemistry of the Earth (2013), in press.
DOI: 10.1016/j.pce.2013.10.009
Google Scholar
[3]
S. Sharma, C. Nirkhe, S. Pethkar, and A. A. Athawale: Chloroform vapour sensor based on copper/polyanniline nanocomposite. Sensor and Actuators B Vol 85 (2002), pp.131-136.
DOI: 10.1016/s0925-4005(02)00064-3
Google Scholar
[4]
P. Kar and A. Choudhury: Carboxylic acid functionalized multi-walled carbon nanotube doped polyanniline for chloroform sensor, sensor and Actuators B, Vol 183 (2014), pp.25-33.
DOI: 10.1016/j.snb.2013.03.093
Google Scholar
[5]
P. Dykstra, J. Hao, S. T. Koev, G. F. Payne, L. Yu, and R. Ghodssi: (2009). An optical MEMS sensor utilizing a chitosan film for catechol detection. Sensors and Actuators B, Vol 138 (2009), p.64–70.
DOI: 10.1016/j.snb.2009.01.065
Google Scholar
[6]
A. Bouvree, M. Castro, Y. Grohens, and M. Rinaudo. Conductive Polymer nano-bioComposites (CPC): Chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. sensors and actuators B, Vol 138 (2009), pp.138-147.
DOI: 10.1016/j.snb.2009.02.022
Google Scholar
[7]
D. Feng, F. Wang, and Z. Chen: Electrochemical glucose sensor based on one step construction of gold nanoparticle-chitosan composite film. Sensors and Actuators B, Vol 138 (2009), pp.539-544.
DOI: 10.1016/j.snb.2009.02.048
Google Scholar
[8]
B. Kumar, M. Castro, and J. Lu: Conductive bio Polymer nano-Composites (CPC): Chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing Talanta, Vol 81 (2010), p.908–915.
DOI: 10.1016/j.talanta.2010.01.036
Google Scholar
[9]
R. Pauliukaite, M. E. Ghica, O. Fatibello-filho, and C. M. A: Electrochemical impedence studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors, Electrochimica Acta, Vol 55 (2010), pp.6239-6247.
DOI: 10.1016/j.electacta.2009.09.055
Google Scholar
[10]
W. Li, D. M. Jang, S. Y. An, D. Kim, S. -ku Hong, and H. Kim: Polyaniline–chitosan nanocomposite: High performance hydrogen sensor from new principle. Sensors and Actuators B, Vol 160 (2011), p.1020– 1025.
DOI: 10.1016/j.snb.2011.09.020
Google Scholar
[11]
T. Ikhsan, I. Nainggolan, S. Derita, K. Rafezi, and Z. Arifin: The sensing mechanism and detection of low concentration acetone using chitosan-based sensors, Sensors and Actuators B, Vol 177 (2013), pp.522-528.
DOI: 10.1016/j.snb.2012.11.063
Google Scholar
[12]
D. Du: (2007). One-step electrochemically deposited interface of chitosan–gold nanoparticles for acetylcholinesterase biosensor design. Journal of Electroanalytical Chemistry, Vol 605 (2007), p.53–60.
DOI: 10.1016/j.jelechem.2007.03.013
Google Scholar
[13]
S. Yalçınkaya, C. Demetgül, M. Timur, and N. Çolak: (2010).
Google Scholar
[14]
T. Advice, U. Kingdom, G. Long, and H. Canada, "Concise International Chemical Assessment Document 58, In Vitro, World Health Organization, Geneva (2004) pp.4-5.
Google Scholar
[15]
D. K. Hore, D. S. Walker, L. Mackinnon, and G. L. Richmond: Molecular Structure of the Chloroform-Water and Dichloromethane-Water Interfaces. J. Phys. Chem. C 2007, Vol 111 (2007), pp.8832-8842.
DOI: 10.1021/jp067176t
Google Scholar
[16]
T. Thanpitcha, A. Sirivat, A. M. Jamieson, and R. Rujiravanit: Preparation and characterization of polyaniline/chitosan blend film. Carbohydrate Polymers, Vol 64 (2006), pp.560-568.
DOI: 10.1016/j.carbpol.2005.11.026
Google Scholar
[17]
R. Derrick Michele., Dusan Stulik., M. Landry , James: Infrared Spectroscopy in Conservation Science, Scientific tools for Conservation, The Getty Conservation Institute Los Angeles (1999) pp.93-98.
Google Scholar