[1]
A.B. Greninger, V.G. Mooradian, Trans. AIME, 128, p.337–341. (1938).
Google Scholar
[2]
W.J. Buehler, R.C. Wiley, U.S. patent 3, 174, 851. (1965).
Google Scholar
[3]
C.A. Heisterkamp, W.J. Buehler, F.E. Wang. (Paper presented at the 8th Int. Conf. on Medical and Biomedical Engineering, Chicago, IL 1969).
Google Scholar
[4]
W.J. Buehler, F.E. Wang. (Paper presented at the Ninth Navy Science Symposium, Washington, D.C., 1966).
Google Scholar
[5]
G.B. Kauffman, I. Mayo, Invention and Technology, p.18–23. (1993).
Google Scholar
[6]
G.F. Andreasen, T.B. Hilleman, J. Am. Dent. Assoc., 82, p.1373–1375. (1971).
Google Scholar
[7]
G.F. Andreasen, R.D. Barrett, Angle Orthod., 42, p.172–177. (1972).
Google Scholar
[8]
G.F. Andreasen, R.F. Morrow, Am. J. Orthod., 73, p.142–151. (1978).
Google Scholar
[9]
D. Mantovani, Shape memory alloys: properties and biomedical applications, JOM-J Min Met Mat S, 52, 36-44. (2000).
DOI: 10.1007/s11837-000-0082-4
Google Scholar
[10]
D.F. Williams, J. Black, P.J. Doherty, Biomaterial-tissue interfaces, Concensus report of second conference on definitions in biomaterials. Elsevier, Amsterdam, 525-533. (1992).
Google Scholar
[11]
K.M. Pfeiffer, J. Brennwald, U. Buchler, D. Hanel, J. Jupiter, J. Mark, P. Staehlin, Implants of pure titanium for internal fixation of the peripheral skeleton injury. 25: 87-89. (1994).
DOI: 10.1016/0020-1383(94)90108-2
Google Scholar
[12]
D. Bogdanski, M. Koller, D. Muller, G. Muhr, M. Bram, H.P. Buchkremer, D. Stover, J. Choi, M. Epple, Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material. Biomaterials 23, 4549–4555. (2002).
DOI: 10.1016/s0142-9612(02)00200-4
Google Scholar
[13]
S.A. Shabalovskaya, Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Biomed Mater Eng 12: 69-109. (2002).
Google Scholar
[14]
M. Assad, A. Chernyshov, M.A. Leroux, C.H. Rivard, A new porous titanium-nickel alloy: Part 1. Cytotoxicity and genotoxicity evaluation, Biomed Mater Eng 12, 225–237. (2002).
Google Scholar
[15]
B. Bertheville, Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute, Biomaterials 27, 1246–1250. (2006).
DOI: 10.1016/j.biomaterials.2005.09.014
Google Scholar
[16]
X.M. Liu, S.L. Wu, K.W.K. Yeung, Y.L. Chan, T. Hu, Z.S. Xu, X.Y. Liu, J.C.Y. Chung, K.M.C. Cheung, P.K. Chu, Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds, Biomaterials 32, 330-338. (2011).
DOI: 10.1016/j.biomaterials.2010.08.102
Google Scholar
[17]
T. Habijan, T. Glogowski, S. Kühn, M. Pohl, J. Wittsiepe, C. Greulich, Can human mesenchymal stem cells survive on a NiTi implant material subjected to cyclic loading?, Acta Biomaterialia 7, 2733–2739. (2011).
DOI: 10.1016/j.actbio.2011.02.022
Google Scholar
[18]
A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Porous NiTi for bone implants: A review, Acta Biomaterialia 4, 773–782. (2008).
DOI: 10.1016/j.actbio.2008.02.009
Google Scholar
[19]
A. Cuschieri, Z. Szabo, Tissue approximation in endoscopic surgery. Oxford, UK: Isis Medical Media. (1995).
Google Scholar
[20]
C. Song, P. Campbell, T. Frank, A. Cuschieri, Thermal modelling of shape memory alloy fixator for medical application. Smart Mater Struct; 11: 312-6. (2002).
DOI: 10.1088/0964-1726/11/2/402
Google Scholar
[21]
W. Xu, T. Frank, G. Stockham, A. Cuschieri, Shape memory alloy fixator for suturing tissue in minimal access surgery. Ann Biomed Eng; 27: 663-9. (1999).
DOI: 10.1114/1.216
Google Scholar
[22]
N. Shibuya, S.N. Manning, A. Meszaros, A.M. Budny, D.S. Malay, G.V. Yu, A Compression Force Comparison Study Among Three Staple Fixation Systems, The Journal Of Foot & Ankle Surgery, Volume 46, Number 1. (2007).
DOI: 10.1053/j.jfas.2006.09.008
Google Scholar
[23]
J.J.G. Malal, G. Hegde, R.D. Ferdinand, Tarsal Joint Fusion Using Memory Compression Staples—A Study of 10 Cases, The Journal of Foot & Ankle Surgery 45(2): 113–117. (2006).
DOI: 10.1053/j.jfas.2005.12.008
Google Scholar
[24]
S. Xu, C. Zhang, S. Li, J. Su, J. Wang, Three-Dimensional Finite Element Analysis of Nitinol Patellar Concentrator. Material Science Forum; Vol. 394-395, pp.45-48. (2002).
DOI: 10.4028/www.scientific.net/msf.394-395.45
Google Scholar
[25]
K. Dai, X. Wu, X. Zu, An Investigation of the Selective Stress-Shielding Effect of Shape-Memory Sawtooth-Arm Embracing Fixator. Materials Science Forum. 394-395, 17-24. (2002).
DOI: 10.4028/www.scientific.net/msf.394-395.17
Google Scholar
[26]
M. Brojan, D. Bombač, F. Kosel, T. Videnič, Shape memory alloys in medicine, RMZ – Materials and Geoenvironment, Vol. 55, No. 2, pp.173-189. (2008).
Google Scholar