Shape Memory Alloy Applications in Bone Fixation: State of the Art

Article Preview

Abstract:

Shape Memory Alloy (SMA) can transform its shape back to its original shape when subjected to a thermomechanical process. Applications of SMA in the bone fixation have been successful due the material’s ability to exhibit Shape Memory Effect (SME) as well as biocompatibility. A good design of bone fixation device made of SMA is capable of exerting a constant compressive force to the bone fracture while remains inert to the environment inside the host’s body. This study presents the application of SMA in bone fixation devices. These include SMA suturing devices, OSStaple, SMA patellar concentrator and SMA embracing fixator.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-122

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.B. Greninger, V.G. Mooradian, Trans. AIME, 128, p.337–341. (1938).

Google Scholar

[2] W.J. Buehler, R.C. Wiley, U.S. patent 3, 174, 851. (1965).

Google Scholar

[3] C.A. Heisterkamp, W.J. Buehler, F.E. Wang. (Paper presented at the 8th Int. Conf. on Medical and Biomedical Engineering, Chicago, IL 1969).

Google Scholar

[4] W.J. Buehler, F.E. Wang. (Paper presented at the Ninth Navy Science Symposium, Washington, D.C., 1966).

Google Scholar

[5] G.B. Kauffman, I. Mayo, Invention and Technology, p.18–23. (1993).

Google Scholar

[6] G.F. Andreasen, T.B. Hilleman, J. Am. Dent. Assoc., 82, p.1373–1375. (1971).

Google Scholar

[7] G.F. Andreasen, R.D. Barrett, Angle Orthod., 42, p.172–177. (1972).

Google Scholar

[8] G.F. Andreasen, R.F. Morrow, Am. J. Orthod., 73, p.142–151. (1978).

Google Scholar

[9] D. Mantovani, Shape memory alloys: properties and biomedical applications, JOM-J Min Met Mat S, 52, 36-44. (2000).

DOI: 10.1007/s11837-000-0082-4

Google Scholar

[10] D.F. Williams, J. Black, P.J. Doherty, Biomaterial-tissue interfaces, Concensus report of second conference on definitions in biomaterials. Elsevier, Amsterdam, 525-533. (1992).

Google Scholar

[11] K.M. Pfeiffer, J. Brennwald, U. Buchler, D. Hanel, J. Jupiter, J. Mark, P. Staehlin, Implants of pure titanium for internal fixation of the peripheral skeleton injury. 25: 87-89. (1994).

DOI: 10.1016/0020-1383(94)90108-2

Google Scholar

[12] D. Bogdanski, M. Koller, D. Muller, G. Muhr, M. Bram, H.P. Buchkremer, D. Stover, J. Choi, M. Epple, Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material. Biomaterials 23, 4549–4555. (2002).

DOI: 10.1016/s0142-9612(02)00200-4

Google Scholar

[13] S.A. Shabalovskaya, Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Biomed Mater Eng 12: 69-109. (2002).

Google Scholar

[14] M. Assad, A. Chernyshov, M.A. Leroux, C.H. Rivard, A new porous titanium-nickel alloy: Part 1. Cytotoxicity and genotoxicity evaluation, Biomed Mater Eng 12, 225–237. (2002).

Google Scholar

[15] B. Bertheville, Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute, Biomaterials 27, 1246–1250. (2006).

DOI: 10.1016/j.biomaterials.2005.09.014

Google Scholar

[16] X.M. Liu, S.L. Wu, K.W.K. Yeung, Y.L. Chan, T. Hu, Z.S. Xu, X.Y. Liu, J.C.Y. Chung, K.M.C. Cheung, P.K. Chu, Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds, Biomaterials 32, 330-338. (2011).

DOI: 10.1016/j.biomaterials.2010.08.102

Google Scholar

[17] T. Habijan, T. Glogowski, S. Kühn, M. Pohl, J. Wittsiepe, C. Greulich, Can human mesenchymal stem cells survive on a NiTi implant material subjected to cyclic loading?, Acta Biomaterialia 7, 2733–2739. (2011).

DOI: 10.1016/j.actbio.2011.02.022

Google Scholar

[18] A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Porous NiTi for bone implants: A review, Acta Biomaterialia 4, 773–782. (2008).

DOI: 10.1016/j.actbio.2008.02.009

Google Scholar

[19] A. Cuschieri, Z. Szabo, Tissue approximation in endoscopic surgery. Oxford, UK: Isis Medical Media. (1995).

Google Scholar

[20] C. Song, P. Campbell, T. Frank, A. Cuschieri, Thermal modelling of shape memory alloy fixator for medical application. Smart Mater Struct; 11: 312-6. (2002).

DOI: 10.1088/0964-1726/11/2/402

Google Scholar

[21] W. Xu, T. Frank, G. Stockham, A. Cuschieri, Shape memory alloy fixator for suturing tissue in minimal access surgery. Ann Biomed Eng; 27: 663-9. (1999).

DOI: 10.1114/1.216

Google Scholar

[22] N. Shibuya, S.N. Manning, A. Meszaros, A.M. Budny, D.S. Malay, G.V. Yu, A Compression Force Comparison Study Among Three Staple Fixation Systems, The Journal Of Foot & Ankle Surgery, Volume 46, Number 1. (2007).

DOI: 10.1053/j.jfas.2006.09.008

Google Scholar

[23] J.J.G. Malal, G. Hegde, R.D. Ferdinand, Tarsal Joint Fusion Using Memory Compression Staples—A Study of 10 Cases, The Journal of Foot & Ankle Surgery 45(2): 113–117. (2006).

DOI: 10.1053/j.jfas.2005.12.008

Google Scholar

[24] S. Xu, C. Zhang, S. Li, J. Su, J. Wang, Three-Dimensional Finite Element Analysis of Nitinol Patellar Concentrator. Material Science Forum; Vol. 394-395, pp.45-48. (2002).

DOI: 10.4028/www.scientific.net/msf.394-395.45

Google Scholar

[25] K. Dai, X. Wu, X. Zu, An Investigation of the Selective Stress-Shielding Effect of Shape-Memory Sawtooth-Arm Embracing Fixator. Materials Science Forum. 394-395, 17-24. (2002).

DOI: 10.4028/www.scientific.net/msf.394-395.17

Google Scholar

[26] M. Brojan, D. Bombač, F. Kosel, T. Videnič, Shape memory alloys in medicine, RMZ – Materials and Geoenvironment, Vol. 55, No. 2, pp.173-189. (2008).

Google Scholar