Effect of Pressing Pressure on Density and Hardness of Powder Miscanthus Reinforced Brake Pads

Article Preview

Abstract:

The aim of this paper is to develop new natural fibre reinforced for automotive brake pad application. For this purpose, new brake pad sampleswere produced using Miscanthus as reinforcement ingredient. The other ingredients are Cashew, Alumina, Phenolic Resin, and Calcite. Three different laboratory formulations were prepared with varying Miscanthus fibre contents from 10, 25, and 40 (wt) and these formulations were moulded four different moulding pressure values such as 50, 100, 200, and 300 MPa. Sieve analysis, density, apparent density, and hardness properties of brake pad samples produced are examined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-240

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.S. Aigbodion, U. Akadike, S.B. Hassan, F. Asuke, J.O. Agunsoye, Development of Asbestos-Free Brake Pad Using Bagasse, Tribology in Industry, 32 (2010) 12-18.

Google Scholar

[2] S.Y. Aku, D.S. Yawas, P.B. Madakson, S.G. Amaren, Characterization of Periwinkle Shell as Asbestos-Free Brake Pad Materials, The Pacific Journal of Science and Technology, 13 (2012) 57-63.

DOI: 10.1016/j.jksues.2013.11.002

Google Scholar

[3] Y. Lu, A Combinatorial Approach for Automotive Friction Materials: Effects of Ingredients on Friction Performance, Composites Science and Technology, 66 (2006) 591-598.

DOI: 10.1016/j.compscitech.2005.05.032

Google Scholar

[4] I. Mutlu, O. Eldogan, F. Findik, Tribological Properties of Some Phenolic Composites Suggested for Automotive Brakes, Tribology International, 39 (2006) 317-325.

DOI: 10.1016/j.triboint.2005.02.002

Google Scholar

[5] H. Jang, K. Ko, S.J. Kim, R.H. Basch, J.W. Fash, The Effect of Metal Fibers on The Friction Performance of Automotive Brake Friction Materials, Wear, 256 (2004) 406-414.

DOI: 10.1016/s0043-1648(03)00445-9

Google Scholar

[6] M.H. Cho, S.J. Kim, D. Kim, H. Jang, Effects of ingredients on tribological characteristics of a brake lining: an experimental case study, Wear, 258 (2005) 1682-1687.

DOI: 10.1016/j.wear.2004.11.021

Google Scholar

[7] T.R. Jaafar, M.S. Selamat, R. Kasiran, Selection of Best Formulation for Semi-Metallic Brake Friction Materials Development, in: K. Kondoh (Ed. ) Powder Metallurgy, 2012, p.30.

DOI: 10.5772/33909

Google Scholar

[8] K.H. Cho, M.H. Cho, S.J. Kim, H. Jang, Tribological Properties of Potassium Titanate in the Brake Friction Material; Morphological Effects, Tribology Letters, 32 (2008) 59-66.

DOI: 10.1007/s11249-008-9362-x

Google Scholar

[9] R. Yun, P. Filip, Y. Lu, Performance and Evaluation of Eco-Friendly Brake Friction Materials, Tribology International, 43 (2010) 2010-(2019).

DOI: 10.1016/j.triboint.2010.05.001

Google Scholar

[10] X. Xin, C.G. Xu, L.F. Qing, Friction properties of sisal fibre reinforced resin brake composites, Wear, 262 (2007) 736-741.

DOI: 10.1016/j.wear.2006.08.010

Google Scholar

[11] H. Geren, R. Avcıoğlu, Y.T. Kavut, K. Tan, S. Sargın, In Turkish: Miscanthus sp. ve Sorghum sp. 'in Bornova Koşullarına Adaptasyonu Üzerinde Araştırmalar, in, Ege Üniversitesi Bilimsel Araştırma Projeleri, Bornova-İzmir/Turkey, 2013, p.65.

Google Scholar

[12] H. Geren, R. Avcıoğlu, Y.T. Kavut, In Turkish: Filotu (Miscanthus x giganteus)'nun Bazı Morfolojik ve Agronomik Özellikleri Üzerine Araştırmalar, in: Türkiye 9. Tarla Bitkileri Kongresi, Bursa, 2011, pp.1708-1713.

Google Scholar

[13] R.M. German, Powder Metallurgy and Particulate Materals Processing: The Processes, Materials, Products, Properties and Applications, Metal Powder Industries Federation, (2005).

Google Scholar

[14] R.J. Talib, A. Muchtar, C.H. Azhari, The Performance Of Semi–Metallic Friction Materials For Passenger Cars, Jurnal Teknologi, 46 (2007) 53–72.

DOI: 10.11113/jt.v46.282

Google Scholar