[1]
S. Chakraverty, K.K. Pradhan,Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions,Aerospace Science and Technology. 36 (2014) 132-156.
DOI: 10.1016/j.ast.2014.04.005
Google Scholar
[2]
H.T. Thai, D.H. Choi, A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates, Composite Structures. 101 (2013) 332-340.
DOI: 10.1016/j.compstruct.2013.02.019
Google Scholar
[3]
D.K. Jha, T. Kant, R.K. Singh, Free vibration response of functionally graded thick plates with shear and normal deformations effects, Composite Structures. 96 (2013) 799-823.
DOI: 10.1016/j.compstruct.2012.09.034
Google Scholar
[4]
S.S. Akavci, An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation, Composite Structures. 108 (2014) 667-676.
DOI: 10.1016/j.compstruct.2013.10.019
Google Scholar
[5]
S. Natarajan, G. Manickam, Bending and vibration of functionally graded material sandwich plates using an accurate theory, Finite Elements in Analysis and Design. 57 (2012) 32-42.
DOI: 10.1016/j.finel.2012.03.006
Google Scholar
[6]
H.T. Thai, T.P. Vo, A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates, Applied Mathematical Modelling. 37 (2013) 3269-3281.
DOI: 10.1016/j.apm.2012.08.008
Google Scholar
[7]
H.T. Thai, S.E. Kim, A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates, Composite Structures. 96 (2013) 165-173.
DOI: 10.1016/j.compstruct.2012.08.025
Google Scholar
[8]
H. Matsunaga, Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory, Composite Structures. 82 (2008) 499–512.
DOI: 10.1016/j.compstruct.2007.01.030
Google Scholar