Method of Numerical Simulation of a Centrifugal Separator for Cleaning Petroleum Products

Article Preview

Abstract:

The method of numerical simulation of the centrifugal separator is presented. The separator carries out alternative way of mechanical cleaning petroleum products from inclusions of water and sludge. Questions of the boundary conditions, creation of a settlement mesh and a method of calculation of two-phase liquid are considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-358

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.A. Belov, S.A. Isaev, Modeling of turbulent flows, SPb, BGTU, (2001).

Google Scholar

[2] A.K. Panov, R.R. Usmanova, V.G. Zaikov, G.E. Zaikov, Complex aerohydrodynamic research and the effectiveness or arresting dispersed particles for barbotage-rotation, Journal of Applied Polymer Science. 104 (4) (2007) 2088-(2091).

DOI: 10.1002/app.25318

Google Scholar

[3] Spalart P.R., Shur, M.L., On the sensitization of turbulence models to rotational and curvature, Aerospace Science and Technology. 1 (5) (1997) 297-302.

DOI: 10.1016/s1270-9638(97)90051-1

Google Scholar

[4] A.I. Khrabriy, D.K. Zaicev, E.M. Smirnov, Numerical modeling of flow with free surface based on the method VOF, Works of CRI acad. A.N. Krylov. 78 (362) (2013) 53-64.

Google Scholar

[5] C.W. Hirt, B. D Nichols, Volume of fluid (VOF), Method for the dynamics of free boundaries, Journal of Computational Physics. 39 (1981) 201-226.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[6] R. Wemmenhove, Numerical simulation of two-phase flow in offshore environments: PhD thesis. University of Groningen. (2008) 121-125.

Google Scholar

[7] A.A. Khalatov, Theory and practice of swirling flows, AS USSR, Institute of Engineering Thermophysics. - Kiev: Science. Dumka, (1989).

Google Scholar

[8] A.A. Girgidov, K.I. Streletc, N.I. Vatin, Numerical simulation of three-dimensional velocity field in the cyclone, Magazine of Civil Engineering. 5 (23) (2011) 5-9.

DOI: 10.5862/mce.23.5

Google Scholar

[9] N.I. Vatin, T.N. Mikhailova, Computation of cross correlation function of induced potential for developed turbulent flow with axisymmetric mean velocity profile, Magnetohydrodynamics New York, N.Y. 22 (4) (1986) 385-390.

Google Scholar

[10] N.I. Vatin, Weight vector of conduction transducer of a correlation flowmeter, Magnetohydrodynamics New York, N.Y. 21 (3) (1985) 316-320.

Google Scholar

[11] V.P. Bocheninskii, N.I. Vatin, V.S. Shmarov, Results of investigation of transient processes in liquid metal loops with MHD Pumps, Trudy LPI. 374 (1981) 20-23.

Google Scholar

[12] M.R. Petrichenko, R.M. Petrichenko, A.B. Kanishev, A.U. Shabanov, Trenie i teploperedacha v porshnevih kol'cah vigateley vnutrennego sgoraniya [Friction and heat transfer in the piston ring of internal combustion engines], LPI, Leningrad, (1990).

Google Scholar

[13] M.R. Petrichenko, N.S. Kharkov, Experimental study of pumping action of helical flow, Technical physics. The Russian Journal of applied physics. 54 (7) (2009) 1063-1065.

DOI: 10.1134/s1063784209070238

Google Scholar

[14] A.V. Shvab, A.G. Chepel, Modeling of swirling turbulent flow in a separator with biconical plates, Journal of engineering physics and thermophysics, 83 (2) (2010) 338-345.

DOI: 10.1007/s10891-010-0350-2

Google Scholar

[15] S. Jakirlic, K Hanjalic, C. Tropea, Modeling rotating and swirling turbulent flows: a perpetual challenge, AIAA Journal, 40 (10) (2002) 1984-(1996).

DOI: 10.2514/2.1560

Google Scholar

[16] R. Thundil Karuppa Raj, V. Ganesan, Study on the effect of various parameters on flow development behind vane swirlers, International journal of thermal sciences, 47 (9) (2008) 1204-1225.

DOI: 10.1016/j.ijthermalsci.2007.10.019

Google Scholar

[17] J. Vondal, J. Hajek, Swirling flow prediction in model combuster with axial guide vane swirler, Chemical engineering transactions, 29 (2012) 1069-1074.

Google Scholar

[18] N. Pourmahmoud, A. Hassanzaden, S.E. Rafiee, M. Rahim, Three-dimentional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube, Heat and technology, 30 (2) (2012) 133-140.

DOI: 10.18280/ijht.300219

Google Scholar

[19] Information on http: /cdlab2. fluid. tuwien. ac. at/LEHRE/TURB/Fluent. Inc/v140/flu_tg. pdf.

Google Scholar