[1]
I.A. Belov, S.A. Isaev, Modeling of turbulent flows, SPb, BGTU, (2001).
Google Scholar
[2]
A.K. Panov, R.R. Usmanova, V.G. Zaikov, G.E. Zaikov, Complex aerohydrodynamic research and the effectiveness or arresting dispersed particles for barbotage-rotation, Journal of Applied Polymer Science. 104 (4) (2007) 2088-(2091).
DOI: 10.1002/app.25318
Google Scholar
[3]
Spalart P.R., Shur, M.L., On the sensitization of turbulence models to rotational and curvature, Aerospace Science and Technology. 1 (5) (1997) 297-302.
DOI: 10.1016/s1270-9638(97)90051-1
Google Scholar
[4]
A.I. Khrabriy, D.K. Zaicev, E.M. Smirnov, Numerical modeling of flow with free surface based on the method VOF, Works of CRI acad. A.N. Krylov. 78 (362) (2013) 53-64.
Google Scholar
[5]
C.W. Hirt, B. D Nichols, Volume of fluid (VOF), Method for the dynamics of free boundaries, Journal of Computational Physics. 39 (1981) 201-226.
DOI: 10.1016/0021-9991(81)90145-5
Google Scholar
[6]
R. Wemmenhove, Numerical simulation of two-phase flow in offshore environments: PhD thesis. University of Groningen. (2008) 121-125.
Google Scholar
[7]
A.A. Khalatov, Theory and practice of swirling flows, AS USSR, Institute of Engineering Thermophysics. - Kiev: Science. Dumka, (1989).
Google Scholar
[8]
A.A. Girgidov, K.I. Streletc, N.I. Vatin, Numerical simulation of three-dimensional velocity field in the cyclone, Magazine of Civil Engineering. 5 (23) (2011) 5-9.
DOI: 10.5862/mce.23.5
Google Scholar
[9]
N.I. Vatin, T.N. Mikhailova, Computation of cross correlation function of induced potential for developed turbulent flow with axisymmetric mean velocity profile, Magnetohydrodynamics New York, N.Y. 22 (4) (1986) 385-390.
Google Scholar
[10]
N.I. Vatin, Weight vector of conduction transducer of a correlation flowmeter, Magnetohydrodynamics New York, N.Y. 21 (3) (1985) 316-320.
Google Scholar
[11]
V.P. Bocheninskii, N.I. Vatin, V.S. Shmarov, Results of investigation of transient processes in liquid metal loops with MHD Pumps, Trudy LPI. 374 (1981) 20-23.
Google Scholar
[12]
M.R. Petrichenko, R.M. Petrichenko, A.B. Kanishev, A.U. Shabanov, Trenie i teploperedacha v porshnevih kol'cah vigateley vnutrennego sgoraniya [Friction and heat transfer in the piston ring of internal combustion engines], LPI, Leningrad, (1990).
Google Scholar
[13]
M.R. Petrichenko, N.S. Kharkov, Experimental study of pumping action of helical flow, Technical physics. The Russian Journal of applied physics. 54 (7) (2009) 1063-1065.
DOI: 10.1134/s1063784209070238
Google Scholar
[14]
A.V. Shvab, A.G. Chepel, Modeling of swirling turbulent flow in a separator with biconical plates, Journal of engineering physics and thermophysics, 83 (2) (2010) 338-345.
DOI: 10.1007/s10891-010-0350-2
Google Scholar
[15]
S. Jakirlic, K Hanjalic, C. Tropea, Modeling rotating and swirling turbulent flows: a perpetual challenge, AIAA Journal, 40 (10) (2002) 1984-(1996).
DOI: 10.2514/2.1560
Google Scholar
[16]
R. Thundil Karuppa Raj, V. Ganesan, Study on the effect of various parameters on flow development behind vane swirlers, International journal of thermal sciences, 47 (9) (2008) 1204-1225.
DOI: 10.1016/j.ijthermalsci.2007.10.019
Google Scholar
[17]
J. Vondal, J. Hajek, Swirling flow prediction in model combuster with axial guide vane swirler, Chemical engineering transactions, 29 (2012) 1069-1074.
Google Scholar
[18]
N. Pourmahmoud, A. Hassanzaden, S.E. Rafiee, M. Rahim, Three-dimentional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube, Heat and technology, 30 (2) (2012) 133-140.
DOI: 10.18280/ijht.300219
Google Scholar
[19]
Information on http: /cdlab2. fluid. tuwien. ac. at/LEHRE/TURB/Fluent. Inc/v140/flu_tg. pdf.
Google Scholar