[1]
M. Koizumi, The concept of FGM, Ceramic Transactions, Functionally Gradient Materials, 34 (1993) 3-10.
Google Scholar
[2]
B.V. Sankar, An elasticity solution for functionally graded beams, Compos. Sci. Tech. 61 (2001) 689-696.
DOI: 10.1016/s0266-3538(01)00007-0
Google Scholar
[3]
M. Aydogdu, V. Taskin, Free vibration analysis of functionally graded beams with simply supported edges, Mater. Des. 28 (2007) 1651-1656.
DOI: 10.1016/j.matdes.2006.02.007
Google Scholar
[4]
J. Yang, Y. Chen, Free vibration and buckling analyses of functionally graded beams with edge cracks, Compos. Struct. 83 (2008) 48-60.
DOI: 10.1016/j.compstruct.2007.03.006
Google Scholar
[5]
X.F. Li, A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams, J. Sound Vib. 318 (2008) 1210-1229.
DOI: 10.1016/j.jsv.2008.04.056
Google Scholar
[6]
M. Şimşek, T. Kocatürk, Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load, Compos. Struct. 90 (2009) 465-473.
DOI: 10.1016/j.compstruct.2009.04.024
Google Scholar
[7]
M. Şimşek, Vibration analysis of a functionally graded beam under a moving mass by using different beam theories, Compos. Struct. 92 (2010) 904-917.
DOI: 10.1016/j.compstruct.2009.09.030
Google Scholar
[8]
A. Chakraborty, S. Gopalakrishnan, J.N. Reddy, A new beam finite element for the analysis of functionally graded materials, Int. J. Mech. Sci. 45 (2003) 519-539.
DOI: 10.1016/s0020-7403(03)00058-4
Google Scholar
[9]
M.A. Benatta, I. Mechab, A. Tounsi, E.A. Adda Bedia. Static analysis of functionally graded short beams including warping and shear deformation effects, Comp. Mater. Sci. 44 (2008) 765-773.
DOI: 10.1016/j.commatsci.2008.05.020
Google Scholar
[10]
S.A. Sina, H.M. Navazi, H. Haddadpour, An analytical method for free vibration analysis of functionally graded beams, Mater. Des. 30 (2009) 741-747.
DOI: 10.1016/j.matdes.2008.05.015
Google Scholar
[11]
M. Şimşek, Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method, Int. J. Eng. Appl. Sci. 1 (2009) 1-11.
Google Scholar
[12]
M. Şimşek, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories, Nucl. Eng. Des. 240 (2010) 697-705.
DOI: 10.1016/j.nucengdes.2009.12.013
Google Scholar
[13]
Z. Zhong, T. Yu, Analytical solution of a cantilever functionally graded beam, Compos. Sci. Tech. 67 (2007) 481-488.
DOI: 10.1016/j.compscitech.2006.08.023
Google Scholar
[14]
J.N. Reddy, Analysis of functionally graded plates, Int. J. Numer. Meth. Eng. 47 (2000) 663-684.
DOI: 10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8
Google Scholar
[15]
W.L. Li, Free vibrations of beams with general boundary conditions, J. Sound Vib. 237 (2000) 709-725.
DOI: 10.1006/jsvi.2000.3150
Google Scholar
[16]
W.L. Li, M. Daniels, A Fourier series method for the vibrations of elastically restrained plates arbitrarily loaded with springs and masses, J. Sound Vib. 252 (2002) 768-781.
DOI: 10.1006/jsvi.2001.3990
Google Scholar
[17]
Z.D. Yan, Fourier series method in structure mechanics. Tianjun: Tianjun University Press, (1989).
Google Scholar