Straight Beams Rested on Nonlinear Elastic Foundations – Part 2 (Numerical Solutions, Results and Evaluation)

Article Preview

Abstract:

This paper presents numerical solutions of straight plane beam structures rested on an elastic (Winkler's) foundation. It is a continuation of our previous work (see Part 1 of this article) focused on practical applications and solutions including nonlinearities in the foundation (i.e. bilateral linear, bilateral linear + cubic, bilateral linear + cubic + quintic approximations and unilateral approximation for dependencies of reaction forces on deflection in the foundation). For solutions of nonlinear problems of mechanics (i.e. differential 4th-order equations), the Finite Difference Method (i.e. the Central Difference Method) is applied in combination with the Newton (Newton–Raphson) Method. Finally, in one example, linear and nonlinear approaches are solved, evaluated and compared. In some cases, there are evident major differences between the linear and nonlinear solutions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-29

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Frydrýšek, Beams and Frames on Elastic Foundations 1 (Nosníky a rámy na pružném podkladu 1), Faculty of Mechanical Engineering, VŠB - Technical University of Ostrava, ISBN 80-248-1244-4, Ostrava, Czech Republic, 2006, pp.1-463.

DOI: 10.17973/mmsj.2021_12_2021181

Google Scholar

[2] K. Frydryšek, Probabilistic Calculations in Mechanics 1 (Pravděpodobnostní výpočty v mechanice 1), Department of Mechanics of Materials, Faculty of Mechanical Engineering, VŠB - Technical University of Ostrava, ISBN 978-80-248-2314-0, Ostrava, Czech Republic, (2010).

DOI: 10.17973/mmsj.2022_10_2022118

Google Scholar

[3] K. Frydrýšek, K. Tvrdá, R. Jančo, et al., Handbook of Structures on Elastic Foundation, VŠB - Technical University of Ostrava, ISBN 978-80-248-3238-8, Ostrava, Czech Republic, 2013, pp.1-1691.

Google Scholar

[4] R. Kučera, Numerical Methods (Numerické metody), VŠB- Technical University of Ostrava, ISBN 80-248-1198-7, Czech Republic, 2006, p.108 – 112.

Google Scholar

[5] K. Frydrýšek, R. Jančo, et all, Beams and Frames on Elastic Foundations 2 (Nosníky a rámy na pružném podkladu 2), monograph, VŠB - Technical University of Ostrava, ISBN 978-80-248-1743-9, Ostrava, Czech Republic, 2008, pp.1-516.

Google Scholar

[6] K. Frydrýšek, M. Nikodým, et all: Beams and Frames on Elastic Foundations 3 (Nosníky a rámy na pružném podkladu 3), monograph, VŠB - Technical University of Ostrava, ISBN 978-80-248-2257-0, Ostrava, Czech Republic, 2010, pp.1-611.

DOI: 10.22223/tr.2013-2/1967

Google Scholar

[7] M. Hetényi, Beams and Frames on Elastic Foundation, Ann Arbor, University of Michigan Studies, USA, (1946).

Google Scholar

[8] R. Jančo, FEM in the Solution of Beams and Frames on Elastic Foundations (MKP v riešení nosníkov a rámov na pružnom podklade), Slovak University of Technology, ISBN 978-80-227-3880-4, Bratislava, Slovakia, 2013, pp.1-110, written in Slovak.

Google Scholar

[9] M. Nikodým, K. Frydrýšek, Finite Difference Method Used for the Beams on Elastic Foundation – Part 1 (theory), Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, No. 1, 2012, vol. LVIII, ISSN 1210-0471, Ostrava, Czech Republic, pp.157-164.

DOI: 10.22223/tr.2012-1/1907

Google Scholar

[10] M. Nikodým, K. Frydrýšek, Finite Difference Method Used for the Beams on Elastic Foundation – Part 2 (applications), Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, No. 1, 2012, vol. LVIII, ISSN 1210-0471, Ostrava, Czech Republic, pp.165-174.

DOI: 10.22223/tr.2012-1/1908

Google Scholar

[11] G. Jones, Analysis of Beams on Elastic Foundations Using Finite Difference Theory, Thomas Telford Publishing, ISBN 07277-2575-0, London, UK, 1997, p.164.

Google Scholar

[12] M. Kamiński, A generalized version of the perturbation-based stochastic finite difference method for elastic beams, Journal of Theoretical and Applied Mechanics, 2009, 47, 4, pp.957-975.

Google Scholar

[13] K. Frydrýšek, M. Nikodým, Report about Solutions of Beam on Nonlinear Elastic Foundation, Mathematics and Computers in Science and Engineering Series, no. 14, ISSN 2227-4588, ISBN 978-960-474-305-6, Dubrovnik, Croatia, 2013, pp.263-266.

Google Scholar

[14] K. Frydrýšek, R. Čada, Probabilistic Reliability Assessment of Femoral Screws Intended for Treatment of Collum Femoris, Fractures, in BIOMECHANICS 2014 - International Conference of the Polish Society of Biomechanics, Łódź, 2014, in print.

Google Scholar

[15] K. Frydrýšek, J. Jořenek, O. Učeň, T. Kubín, L. Žilka and L. Pleva, Design of External Fixators Used in Traumatology and Orthopaedics – Treatment of Fractures of Pelvis and its Acetabulum. Procedia Engineering, Vol. 48, 2012, ISSN 1877-7058, pp.164-173.

DOI: 10.1016/j.proeng.2012.09.501

Google Scholar

[16] Š. Michenková, K. Frydrýšek, M. Nikodým, Straight Beam Rested on Nonlinear Elastic Foundations – Part 1 (Theory, Experiment, Numerical approach), International Conference on Mechanics and Mechanical Engineering (MME 2014), September 13-14, 2014 in Wuhan, China, in print.

DOI: 10.4028/www.scientific.net/amm.684.11

Google Scholar