A Barycentric Interpolation Collocation Method for Darcy Flow in Two-Dimension

Article Preview

Abstract:

A meshless, barycentric interpolation collocation method for numerical approximation of Darcy flows is proposed. The barycentric Lagrange interpolation and its differentiation matrices are basic tool to discretize governing equations, Dirichlet and Neumann boundary conditions. For Darcy flows in irregular domains, embedding the irregular domain into a rectangular, the barycentric interpolation collocation method can be directly applied. The resultant saddle-point systems come from combining the discretized governing equations and boundary conditions, such that we can deal easy with all kinds of boundary condition either regular or irregular domains. Some numerical examples are given to illustrate the accuracy, stability and robust of presented method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tlupova, R. Cortez, Boundary integral solutions of coupled Stokes and Darcy flows, Journal of Computational Physics 228 (2009) 158-179.

DOI: 10.1016/j.jcp.2008.09.011

Google Scholar

[2] P.B. Bochev, C.R. Dohrmann, A computational study of stabilized, low-order C0 finite element approximations of Darcy equations, Computational Mechanics 38 (2006) 323-333.

DOI: 10.1007/s00466-006-0036-y

Google Scholar

[3] J. Liu, L. Mu, X. Ye, A comparative study of locally conservative numerical methods for Darcy's flows, Procedia Computer Science 4(2011) 974-983.

DOI: 10.1016/j.procs.2011.04.103

Google Scholar

[4] P.B. Bochev, M.D. Gunzburger, A locally conservative least-squares method for Darcy flows, Communications in Numerical Methods in Engineering 24(2008) 97-110.

DOI: 10.1002/cnm.957

Google Scholar

[5] C. D'Angelo, A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids, ESAIM: Mathematical Modelling and Numerical Analysis 46(2012) 465-489.

DOI: 10.1051/m2an/2011148

Google Scholar

[6] A. Masud, T.J.R. Hughes, A stabilized mixed finite element method for Darcy flow, Computer Methods in Applied Mechanics and Engineering 191(2002) 4341-4370.

DOI: 10.1016/s0045-7825(02)00371-7

Google Scholar

[7] F. Brezzi, T.J.R. Hughes, L. D. Marini, et al, Mixed discontinuous Galerkin methods for Darcy flow, Journal of Scientific Computing 22(2005) 119-145.

DOI: 10.1007/s10915-004-4150-8

Google Scholar

[8] V.J. Ervin, Approximation of axisymmetric Darcy flow, Technical report, Dept. Math. Sci., Clemson University, (2012).

Google Scholar

[9] M.E.S. Palma, Hybridizable discontinuous Galerkin method for curved domains, University of Minnesota, (2012).

Google Scholar

[10] L.N. Trefethen, Spectral methods in Matlab, Philadelphia: SIAM, (2000).

Google Scholar

[11] J.A. Weideman, S.C. Reddy, A MATLAB differentiation matrix suite, ACM Transactions on Mathematical Software 26(2000) 465-519.

DOI: 10.1145/365723.365727

Google Scholar

[12] F.P. Mariano, L.Q. Moreira, A. Silveira-Neto, et al, A new incompressible Navier-Stokes solver combining Fourier pseudo-spectral and immersed boundary methods. Computer Modeling in Engineering & Sciences(CMES) 59(2010) 181-216.

Google Scholar

[13] N. Mai-Duy, L. Mai-Cao, T. Tran-Cong, Computation of transient viscous flows using indirect radial basis function networks, Computer Modeling in Engineering and Sciences(CMES) 18(2007) 59-78.

Google Scholar

[14] G.C. Bourantas, E.D. Skouras, V.C. Loukopoulos, et al, Numerical solution of non-isothermal fluid flows using local radial basis functions(LRBF) interpolation and a velocity-correction method, Computer Modeling in Engineering & Sciences(CMES) 64(2010).

Google Scholar

[15] N.A. Libre, A. Emdadi, E.J. Kansaet, al. Wavelet based adaptive RBF method for nearly singular Poisson-type problems on irregular domains, Computer Modeling in Engineering and Sciences (CMES) 19(2009) 161-190.

Google Scholar

[16] J.P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, Siam Review 46(2004) 501-517.

DOI: 10.1137/s0036144502417715

Google Scholar

[17] J.H. Nicholas The numerical stability of barycentric Lagrange interpolation, IMA Journal of Numerical Analysis 24(2004) 547-556.

DOI: 10.1093/imanum/24.4.547

Google Scholar

[18] J.P. Berrut, R. Baltensperger, The linear rational pseudospectral method for boundary value problems, BIT Numerical Mathematics 41(2001) 868-879.

DOI: 10.1023/a:1021916623407

Google Scholar

[19] Ø. Tråsdahl. Numerical solution of partial differential equations in time-dependent domains, Norwegian University of Science and Technology, (2008).

Google Scholar