[1]
S. Tlupova, R. Cortez, Boundary integral solutions of coupled Stokes and Darcy flows, Journal of Computational Physics 228 (2009) 158-179.
DOI: 10.1016/j.jcp.2008.09.011
Google Scholar
[2]
P.B. Bochev, C.R. Dohrmann, A computational study of stabilized, low-order C0 finite element approximations of Darcy equations, Computational Mechanics 38 (2006) 323-333.
DOI: 10.1007/s00466-006-0036-y
Google Scholar
[3]
J. Liu, L. Mu, X. Ye, A comparative study of locally conservative numerical methods for Darcy's flows, Procedia Computer Science 4(2011) 974-983.
DOI: 10.1016/j.procs.2011.04.103
Google Scholar
[4]
P.B. Bochev, M.D. Gunzburger, A locally conservative least-squares method for Darcy flows, Communications in Numerical Methods in Engineering 24(2008) 97-110.
DOI: 10.1002/cnm.957
Google Scholar
[5]
C. D'Angelo, A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids, ESAIM: Mathematical Modelling and Numerical Analysis 46(2012) 465-489.
DOI: 10.1051/m2an/2011148
Google Scholar
[6]
A. Masud, T.J.R. Hughes, A stabilized mixed finite element method for Darcy flow, Computer Methods in Applied Mechanics and Engineering 191(2002) 4341-4370.
DOI: 10.1016/s0045-7825(02)00371-7
Google Scholar
[7]
F. Brezzi, T.J.R. Hughes, L. D. Marini, et al, Mixed discontinuous Galerkin methods for Darcy flow, Journal of Scientific Computing 22(2005) 119-145.
DOI: 10.1007/s10915-004-4150-8
Google Scholar
[8]
V.J. Ervin, Approximation of axisymmetric Darcy flow, Technical report, Dept. Math. Sci., Clemson University, (2012).
Google Scholar
[9]
M.E.S. Palma, Hybridizable discontinuous Galerkin method for curved domains, University of Minnesota, (2012).
Google Scholar
[10]
L.N. Trefethen, Spectral methods in Matlab, Philadelphia: SIAM, (2000).
Google Scholar
[11]
J.A. Weideman, S.C. Reddy, A MATLAB differentiation matrix suite, ACM Transactions on Mathematical Software 26(2000) 465-519.
DOI: 10.1145/365723.365727
Google Scholar
[12]
F.P. Mariano, L.Q. Moreira, A. Silveira-Neto, et al, A new incompressible Navier-Stokes solver combining Fourier pseudo-spectral and immersed boundary methods. Computer Modeling in Engineering & Sciences(CMES) 59(2010) 181-216.
Google Scholar
[13]
N. Mai-Duy, L. Mai-Cao, T. Tran-Cong, Computation of transient viscous flows using indirect radial basis function networks, Computer Modeling in Engineering and Sciences(CMES) 18(2007) 59-78.
Google Scholar
[14]
G.C. Bourantas, E.D. Skouras, V.C. Loukopoulos, et al, Numerical solution of non-isothermal fluid flows using local radial basis functions(LRBF) interpolation and a velocity-correction method, Computer Modeling in Engineering & Sciences(CMES) 64(2010).
Google Scholar
[15]
N.A. Libre, A. Emdadi, E.J. Kansaet, al. Wavelet based adaptive RBF method for nearly singular Poisson-type problems on irregular domains, Computer Modeling in Engineering and Sciences (CMES) 19(2009) 161-190.
Google Scholar
[16]
J.P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, Siam Review 46(2004) 501-517.
DOI: 10.1137/s0036144502417715
Google Scholar
[17]
J.H. Nicholas The numerical stability of barycentric Lagrange interpolation, IMA Journal of Numerical Analysis 24(2004) 547-556.
DOI: 10.1093/imanum/24.4.547
Google Scholar
[18]
J.P. Berrut, R. Baltensperger, The linear rational pseudospectral method for boundary value problems, BIT Numerical Mathematics 41(2001) 868-879.
DOI: 10.1023/a:1021916623407
Google Scholar
[19]
Ø. Tråsdahl. Numerical solution of partial differential equations in time-dependent domains, Norwegian University of Science and Technology, (2008).
Google Scholar