[1]
Barari, A. Kimiaeifar, G. Domairry and M. Moghimi, Analytical evaluation of beam deformation problem using approximate methods, Songklanakarin J. Sci. Technol., 32(2010) 281-288.
Google Scholar
[2]
N. Tolou, J. Mahmoudi, M. Ghasemi, I. Khatami, A. Barari and D.D. Ganji, On the non-linear deformation of elastic beams in an analytical solution, Asian Journal of Scientific Research, 1(2008) 437-443.
DOI: 10.3923/ajsr.2008.437.443
Google Scholar
[3]
F. Geng, Iterative reproducing kernel method for a beam equation with third-order nonlinear boundary conditions, Mathematical Sciences, 6(2012) 1-4.
DOI: 10.1186/2251-7456-6-1
Google Scholar
[4]
Y.M. Wang, W.J. Wu, R.P. Agarwal, A fourth-order compact finite difference method for nonlinear higher-order multi-point boundary value problems, Computers & Mathematics with Applications, 61(2011) 3226-3245.
DOI: 10.1016/j.camwa.2011.04.016
Google Scholar
[5]
Q.A. Dang, H.N. Thanh, Iterative method for solving a beam equation with nonlinear boundary conditions, Advances in Numerical Analysis, 2013(2013) Article ID 470258.
DOI: 10.1155/2013/470258
Google Scholar
[6]
E. Alves, E.A. Toledo, L.A.P. Gomes, and M.B.S. Cortes, A note on iterative solutions for a nonlinear fourth order ode, Bol. Soc. Paran. Mat., 27(2009) 15-20.
DOI: 10.5269/bspm.v27i1.9062
Google Scholar
[7]
T.F. Ma, J. Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order, Applied Mathematics and Computation, 159(2004) 11-18.
DOI: 10.1016/j.amc.2003.08.088
Google Scholar
[8]
M. El-Gamel, A.I. Zayed, Sinc-Galerkin method for solving nonlinear boundary-value problems, Computers & Mathematics with Applications, 48(2004) 1285-1298.
DOI: 10.1016/j.camwa.2004.10.021
Google Scholar
[9]
K.N.S. K. Viswanadham, S. Ballem, Numerical Solution of Fourth Order Boundary Value Problems by Galerkin Method with Cubic B-splines, International Journal of Engineering Science and Innovative Technology (IJESIT) 2(2013) 41-53.
DOI: 10.1016/j.proeng.2015.11.496
Google Scholar
[10]
W. Chen, C. Shu, W. He, T. Zhong, The application of special matrix product to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates. Computers & Structures, 2000, 74(1): 65-76.
DOI: 10.1016/s0045-7949(98)00320-4
Google Scholar
[11]
M.T. Darvishi, F. Khani, S. Kheybari, A numerical solution of the Laxs 7th-order KdV equation by pseudospectral method and darvishis preconditioning, Int. J. Comtep. Math. Sciences, 2(2007) 1097-1106.
DOI: 10.12988/ijcms.2007.07111
Google Scholar
[12]
Z.Q. Wang, S. Li, Y. Ping, J. Jiang, T.F. Ma, A highly accurate regular domain collocation method for solving potential problems in the irregular doubly connected domains, Mathematical Problems in Engineering, 2014(2014) Article ID 397327.
DOI: 10.1155/2014/397327
Google Scholar
[13]
J.P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, Siam Review 46(2004) 501-517.
DOI: 10.1137/s0036144502417715
Google Scholar
[14]
J.A. Weideman, S.C. Reddy, A MATLAB differentiation matrix suite, ACM Transactions on Mathematical Software 26(2000) 465-519.
DOI: 10.1145/365723.365727
Google Scholar
[15]
Z.Q. Wang, S.P. Li, B.T. Tang and X.W. Zhao, High precision numerical analysis of vibration problems under pulse excitation, Journal of Mechanical Engineering 45(2009) 288-292.
DOI: 10.3901/jme.2009.01.288
Google Scholar
[16]
L.N. Trefethen, Spectral methods in MATLAB, Philadelphia: SIAM, (2000).
Google Scholar
[17]
R. Jalilian, Non-polynomial spline solutions for special nonlinear fourth-order boundary value problems, Mathematical Modelling & Computations, 1(2011) 135- 147.
Google Scholar