[1]
Love AEH A Treatise on Mathematical Theory of Elasticity (1927).
Google Scholar
[2]
Fuller FB. The writhing number of a space curve. ProcNatlAcadSci, 1971, 68(4): 815—819.
Google Scholar
[3]
BenhamCJ. Onset of writhing in circular elastic polymers. Physical Review A, 1989, 39(5): 2582—2586.
DOI: 10.1103/physreva.39.2582
Google Scholar
[4]
Travers A A, Thompson J M T. An introduction to the mechanics of DNA[J]. Phil Trans R. SocLond A. 2004, 362: 1265-1279.
Google Scholar
[5]
Liu Yanzhu. Nonlinear Mechanics of Thin Elastic Rod-Theoretical Basis of Mechanical Model of DNA, Tsinghua University Press and Springer, 2005, 3.
Google Scholar
[6]
Liu Yanzhu, Xue Yun, Chen Liqun. Dynamical stability of equilibrium of a thin elastic rod, Journal of physics, 2004, 53(7).
Google Scholar
[7]
D.Q. Cao, M. T. Song, R. W. Tucker, W. D. Zhu, D. S. Liu, W. H. Huang, Dynamic equations of thermoelasticCosserat rods. 2013, 181880-1887.
Google Scholar
[8]
Xue Yun, Weng De-Wei, Chen Li-Qun, Methods of analytical mechanics for exact Cosserat elastic rod dynamics. 2013, 62(4).
DOI: 10.7498/aps.62.044601
Google Scholar
[9]
Langer J. SingerDA. Lagrange aspects of the Kirchhoff elastic rod. SIAM Rev, 1996, 38(4): 605~618.
DOI: 10.1137/s0036144593253290
Google Scholar
[10]
Pozo Coronado LM, Hamilton equations for elastic in the Euclidean 3space. Physica D, 2000, 141: 248~260.
Google Scholar
[11]
Westcott TP, Tobias I, Olson WK. Elasticity theory and numerical analysis of DNA supercoiling: An application to DNA looping. J Phys Chemistry, 1995, 99: 17926~17935.
DOI: 10.1021/j100051a018
Google Scholar
[12]
Wang P, Xue Y, Liu Y.L. Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics. Chin. Phys. B, 2012, 21(07): 070203-06.
DOI: 10.1088/1674-1056/21/7/070203
Google Scholar
[13]
Wang P, Xue Y, Liu Y.L. Noether symmetry and conserved quantities of analytical dynamics of a Cosserat thin elastic rod. Chin. Phys. B, 2013, 22(10): 104503-6.
DOI: 10.1088/1674-1056/22/10/104503
Google Scholar