[1]
M. Garofalakis. J. Gehrke and R. Rastogi. Querying andMining Data Streams: You only Get One Look. In the tutorial notes of VLDB, (2002).
DOI: 10.1145/564691.564794
Google Scholar
[2]
Han J, Pei J, Yin Y, et al. Mining frequent patterns without candidate generation: A frequent pattern tree approach. Data Mining and Knowledge Discovery, 2004, 8(1): 53-87.
DOI: 10.1023/b:dami.0000005258.31418.83
Google Scholar
[3]
Gibbons P B, Matias Y. Synopsis data structures for massive data sets /Proc of the 10th Annual ACM-SIAM Sympon Discrete Algorithms. New York: ACM/SIAM, 1999: 909-910.
DOI: 10.1090/dimacs/050/02
Google Scholar
[4]
Cheung Y L, Fu A W C. Mining frequent itemsets without support threshold: With and without item constraints. IEEE Trans on Knowledge and Data Engineering, 2004, 16(9): 1052-1069.
DOI: 10.1109/tkde.2004.44
Google Scholar
[5]
Babcock B, Olston C. Distributed top-Kmonitoring /Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2003: 28-39.
DOI: 10.1145/872757.872764
Google Scholar
[6]
Giannella C, Han J, Pei J, et al. Mining Frequent Patterns in Data Streams at Multiple Time Granularities∥Data Mining: Next Generation Challenges and Future Directions. Cambridge, Massachusetts: MIT/AAAI Press, 2004: 191-212.
Google Scholar
[7]
Manku G S, Motwani R. Approximate frequency counts over streaming data /Proc of the 28th Int Conf on Very Large Data Bases. San Francisco, CA: Morgan, Kaufmann, 2002: 346-357.
DOI: 10.1016/b978-155860869-6/50038-x
Google Scholar
[8]
Metwally A, Agrawal D, Abbadi A E. Efficient computation of frequent and top-k elements in data streams /Proc of the Int Conf on Data Theory. Berlin: Springer, 2005: 398-4l2.
DOI: 10.1007/978-3-540-30570-5_27
Google Scholar
[9]
Li Hai-Feng, ZHANG Ning, ZHU Jian-Ming, CAO Huai-Hu. Frequent Itemset Mining over Time-sensitive Streams. Chinese Journal of Computers. 2012, vol 35, No. 11.
DOI: 10.3724/sp.j.1016.2012.02283
Google Scholar
[10]
Deypir M, Sadreddini M H. An efficient algorithm for mining frequent itemsets with large window over data streams. International Journal of data Engineering, 2011, 2(3): 119-125.
DOI: 10.1109/iccke.2011.6413356
Google Scholar