[1]
J. Shi, J. Malik. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 22(2000), pp.888-905.
DOI: 10.1109/34.868688
Google Scholar
[2]
A.Y. Ng, M.I. Jordan, Weiss Y. On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, Vol. 2(2002), pp.849-856.
Google Scholar
[3]
M. MeilPa, J. Shi. Learning segmentation by random walks. Neural Information Processing Systems, (2001).
Google Scholar
[4]
U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, Vol. 17(2007), pp.395-416.
DOI: 10.1007/s11222-007-9033-z
Google Scholar
[5]
Z. Wu, R. Leahy. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 15. 11(1993), pp.1101-1113.
DOI: 10.1109/34.244673
Google Scholar
[6]
S. Sarkar, K.L. Boyer. Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. In Computer Vision and Pattern Recognition, 1996. Proceedings CVPR'96, 1996 IEEE Computer Society Conference on. IEEE, (1996).
DOI: 10.1109/cvpr.1996.517115
Google Scholar
[7]
C.H.Q. Ding, X. He, H. Zha, M. Gu, H.D. Simon. A min-max cut algorithm for graph partitioning and data clustering. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE, (2001), pp.107-114.
DOI: 10.1109/icdm.2001.989507
Google Scholar
[8]
S. Wang, J.M. Siskind. Image segmentation with ratio cut. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 25(2003), pp.675-690.
DOI: 10.1109/tpami.2003.1201819
Google Scholar
[9]
M. Meila, J. Shi. A random walks view of spectral segmentation. In Richardson T and Jaakkola T, editors, Workshop on Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, Key West, FL(2001).
Google Scholar
[10]
F. Zhao, H. Liu, L. Jiao. Spectral clustering with fuzzy similarity measure. Digital Signal Processing, Vol. 21(2011), pp.701-709.
DOI: 10.1016/j.dsp.2011.07.002
Google Scholar
[11]
A. Choromanska, T. Jebara, H. Kim, M. Mohan, C. Monteleoni. Fast spectral clustering via the nyström method. In Algorithmic Learning Theory. Springer Berlin Heidelberg (2013), pp.367-381.
DOI: 10.1007/978-3-642-40935-6_26
Google Scholar
[12]
T. Xiang, S. Gong. Spectral clustering with eigenvector selection. Pattern Recognition, Vol. 41(2008), pp.1012-1029.
DOI: 10.1016/j.patcog.2007.07.023
Google Scholar
[13]
S.A. Toussi, H.S. Yazdi, E. Hajinezhad, S. Effati. Eigenvector Selection in Spectral Clustering using Tabu Search. In 2011 1st International eConference on Computer and Knowledge Engineering, 2011. IEEE Computer Society, (2011), pp.75-80.
DOI: 10.1109/iccke.2011.6413328
Google Scholar
[14]
H. Ning, W. Xu, Y. Chi, Y. Gong, T.S. Huang. Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition, Vol. 43(2010), pp.113-127.
DOI: 10.1016/j.patcog.2009.06.001
Google Scholar