Numerical Solution to Volterra-Type Integro-Differential Equations of the Second Kinds by Legendre Collocation Method

Article Preview

Abstract:

The purpose of this paper is to propose an efficient numerical method for solving Volterra-type integro-differential equation of the second kinds. This method based on Legendre-Gauss-Radau collocation, which is easy to be implemented especially for nonlinear and possesses high accuracy. Also, the method can be done by proceeding in time step by step. Illustrative examples have been discussed to demonstrate the validity and applicability of the technique, and the results have been compared with the exact solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1522-1527

Citation:

Online since:

November 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Wazwaz: Appl. Math. Comput. Vol. 77(1996), p.79.

Google Scholar

[2] K. Maleknejad and N. Aghazadeh: Appl. Math. Comput. Vol. 161 (2005), p.915.

Google Scholar

[3] H. Brunner, A. Makroglou and R. K. Miller: Appl. Numer. Math. Vol. 23 (1997) , p.381.

Google Scholar

[4] W. Wang: Appl. Math. Comput. Vol. 172(2006), p.1323.

Google Scholar

[5] C. T. H. Baker: J. Comput. Appl. Math. Vol. 125 (2000), p.217.

Google Scholar

[6] H. Brunner: Collocation Methods for Volterra Integral and Related Functional Equations (Cambridge University Press, New York 2004).

Google Scholar

[7] L. M. Delves and J. L. Mohamed: Computational Methods for Integral Equations(Cambridge University Press, Cambridge 1985).

Google Scholar

[8] J. G. Blom and H. Brunner: ACM Trans. Math. Software Vol. 17(2)(1991) , p.167.

Google Scholar

[9] T. Tang: IMA J. Numer. Anal. Vol. 13 (1)(1993) , p.93.

Google Scholar

[10] M. Muhammad, A. Nurmuhammad, M. Mori and M. Sugihara: J. Comput. Appl. Math. Vol. 177(2005), p.269.

Google Scholar

[11] P. W. Sharp and J. H. Verner: Appl. Numer. Math. Vol. 34 (2-3)(2000), p.261.

Google Scholar

[12] P. W. Sharp and J. H. Verner: SIAM J. Numer. Anal. Vol. 38 (2)(2000), p.347.

Google Scholar

[13] R. Hagen and B. Silbermann: Operator equations and numerical analysis, Seminar Analysis, Karl-Weierstras-Institutfur Mathematik, Berlin, 1987. Ch. On stability of the qualocation method, pp.43-52.

Google Scholar

[14] I. H. Sloan: Numer. Math. Vol. 54(1988), p.41.

Google Scholar

[15] I. H. Sloan: J. Comput. Appl. Math. Vol. 125(2000), p.461.

Google Scholar

[16] I. H. Sloan and W. L. Wendland: Zeit. f. Anal. u. ihre Anw. Vol. 8(1989), p.361.

Google Scholar

[17] X. H. Ma and C. M. Huang: Appl. Math. Modelling Vol. 38(2014), p.1434.

Google Scholar

[18] Z. Q. Wang and B. Y. Guo: J. Sci. Comput. Vol. 52(2012), p.226.

Google Scholar

[19] B. Y. Guo and Z. Q. Wang: Comput. Methods Appl. Mech. Eng. Vol. 196(2007), p.3726.

Google Scholar

[20] B. Y. Guo and Z. Q. Wang: Adv. Comput. Math. Vol. 30(2009), p.249.

Google Scholar

[21] B. Y. Guo and Z. Q. Wang: Discrete Contin. Dyn. Syst., Ser. B Vol. 14(2010), p.1029.

Google Scholar