Improved Particle Filter

Article Preview

Abstract:

For the particle filter, the paper proposes an approximate algorithm for the case of unknown measurement noise and make a comparison between EKF algorithm and the approximate particle filter for estimating trajectory in a bistatic radar system. Simulation results show that the advantage of the particle filter and theavailability of the approximate particle filter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4072-4075

Citation:

Online since:

November 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Arulampalam M S, MaskellS, GordonN, A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking[J],IEEE Trans on signal proc, 2002, 50(2): 174-188.

DOI: 10.1109/78.978374

Google Scholar

[2] Kotecha J H, Djuric P M, Gaussian sum particle filtering[J], IEEE trans signal processing, 2003, 51(10): 2602-2611.

DOI: 10.1109/tsp.2003.816754

Google Scholar

[3] Kotecha J H, Djuric P M, Gaussian particle filtering[J], IEEE trans signal processing, 2003, 51(10): 2592-2601.

DOI: 10.1109/tsp.2003.816758

Google Scholar

[4] Djuric P M, Bugallo M F and Miguez J, Density assisted particle filters for state and parameter estimation[C], IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 2: 701-704.

DOI: 10.1109/icassp.2004.1326354

Google Scholar

[5] Schiler T L, Erdogmus D and Principe J C, Parzen particle filters[C], IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 5: 781-784.

DOI: 10.1109/icassp.2004.1327227

Google Scholar

[6] Uosaki K, Kimura Y and Hatanaka T, Evolution strategies based particle filters for state and parameter estimation of nonlinear models[C], IEEE Evolutionary Computation Congress 2004, 1: 884-890.

DOI: 10.1109/cec.2004.1330954

Google Scholar