Manipulation of Separation Selectivity for Alkali Metals Using Capped Single-Walled Carbon Nanotubes: A Theoretical Study

Article Preview

Abstract:

Alkali metal (Cs/Li/Na) adsorption on (5, 5) and (9, 0) single-walled carbon nanotubes (CNTs) with a capped edge had been investigated by first-principles calculations. Our calculations are performed within density functional theory (DFT) under the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE).For the indefective (5, 5)/(9, 0) CNT, adsorption energy ordering of the alkali-metal adatoms is Cs>Li>Na so that the Cs adsorption was energetically favored with respect to the Li/Na adatom. However, the adsorption energy ordering of the alkali-metal adatoms for the defective (5, 5) CNT was Li>Cs>Na. Therefore, separation selectivity for alkali metals could be actualized using the capped single-walled carbon nanotubes. The (5, 5)/(9, 0) P-CNT adsorbed Cs atoms preferentially, while the (5, 5)/(9, 0) defective CNT (D-CNT) adsorbed Li atoms advantageously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4307-4310

Citation:

Online since:

November 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Nature (London), 354 (1991) 56.

Google Scholar

[2] Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 72 (1998) 2912.

Google Scholar

[3] C. Bower, W. Zhu, D. Shalom, D. Lopez, L. H. Chen, P. L. Gammel, S. Jin, Appl. Phys. Lett. 80 (2002) 3820.

Google Scholar

[4] S. Hong, S. Myung, Nature Nanotech. 2 (2007) 207.

Google Scholar

[5] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637.

Google Scholar

[6] S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature (London) 393 (1998) 49.

Google Scholar

[7] R. Martel, T. Schmidt, H.R. Shea, T. Hartel, Ph. Avouris, Appl. Phys. Lett. 73 (1998) 2447.

Google Scholar

[8] Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Appl. Phys. Lett. 86 (2005) 073105.

Google Scholar

[9] Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, M. Morinaga, Carbon 42 (2004) 2677.

Google Scholar

[10] G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon. Chem. Phys. Lett. 312 (1999) 14.

Google Scholar

[11] B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett. 307 (1999) 153.

Google Scholar

[12] A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, R.E. Smalley, J. Electrochem. Soc. 147 (2000) 2845.

Google Scholar

[13] J.J. Zhao, A. Buldum, J. Han, P.J. Lu, Phys. Rev. Lett. 85 (2000) 1706.

Google Scholar

[14] P. Dubot, P. Cenedese, Phys. Rev. B 6324 (2001) 241402.

Google Scholar

[15] Kar T, Pattanayak J, Scheiner S. J. Phys. Chem. A 105 (2001) 10397.

Google Scholar

[16] Y. Liu, H. Yukawa, M. Morinaga, Comput. Mat. Sci. 30 (2004) 50.

Google Scholar

[17] K.A. Dean, B.R. Chalamala, J. Appl. Phys. 85 (1999) 3832.

Google Scholar

[18] S. Iijima, T. Ichihashi, Nature (London) 363 (1993) 603.

Google Scholar

[19] A. Maiti, J. Andzelm, N. Tanpipat, P. Allmen, Phys. Rev. Lett. 87 (2001) 155502.

Google Scholar

[20] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[21] Information on http: /www. quantum-espresso. org.

Google Scholar