Structure and Nanoscale Polarization Switching Induced by High Frequency Alternating Current in PbTiO3 Polycrystalline Films

Article Preview

Abstract:

PbTiO3 (PTO) films were successfully fabricated by sol-gel method. We studied the structure and the nanoscale polarization switching property using XRD and Piezoresponse Force Microscopy. The results reveal that the PTO films are single perovskite phase grain films with tetragonal structure, and are polycrystalline materials with no evidence of preferential orientation. The average grain size is about 150nm and a striped multi-domain structure is exhibited in individual grains. Under 15 kHz alternating current of PFM, a significant asymmetry of switching pattern was observed. We suggest that the cooperative action of the built-in electric field at the bottom interface and the PFM ac-voltage lead to the asymmetry switching.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4395-4398

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. F. Scott Applications of modern ferroelectrics, Science [J]. 2007: 315 954-959.

Google Scholar

[2] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy and M. Bibes Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature [J]. 2009: 460 81-84.

DOI: 10.1038/nature08128

Google Scholar

[3] X. Ren Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nat Mater [J]. 2004: 3 91-94.

DOI: 10.1038/nmat1051

Google Scholar

[4] Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang and R. Ramesh Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat Mater [J]. 2008: 7 478-482.

DOI: 10.1038/nmat2184

Google Scholar

[5] P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A. P. Baddorf and S. V. Kalinin Polarization control of electron tunneling into ferroelectric surfaces, Science [J]. 2009: 324 1421-1425.

DOI: 10.1126/science.1171200

Google Scholar

[6] S. M. Wu, S. A. Cybart, M. D. R. P. Yu, J. X. Zhang, R. Ramesh and R. C. Dynes Reversible electric control of exchange bias in a multiferroic field-effect device, Nat Mater [J]. 2010: 9 756-761.

DOI: 10.1038/nmat2803

Google Scholar

[7] E. Soergel Piezoresponse force microscopy (PFM), Journal of Physics D: Applied Physics [J]. 2011: 44 464003-01-17.

DOI: 10.1088/0022-3727/44/46/464003

Google Scholar

[8] H. Lu, C. -W. Bark, D. E. d. l. Ojos, J. Alcala, C. B. Eom, G. Catalan and A. Gruverman Mechanical Writing of Ferroelectric Polarization, Science [J]. 2012: 336 59-61.

DOI: 10.1126/science.1218693

Google Scholar

[9] A. L. Kholkin, V. V. Shvartsman, A. Y. Emelyanov, R. Poyato, M. L. Calzada and L. Pardo Stress-induced suppression of piezoelectric properties in PbTiO3: La thin films via scanning force microscopy, Applied Physics Letters [J]. 2003: 82 2127-2129.

DOI: 10.1063/1.1565177

Google Scholar

[10] A. Gruverman, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. K. Tagantsev, J. S. Cross and M. Tsukada Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors, Applied Physics Letters [J]. 2003: 83 728-730.

DOI: 10.1063/1.1593830

Google Scholar

[11] S. Kalinin and D. Bonnell Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Physical Review B [J]. 2002: 65 125408-1-5.

DOI: 10.1103/physrevb.65.125408

Google Scholar

[12] S. Kalinin, E. Karapetian and M. Kachanov Nanoelectromechanics of piezoresponse force microscopy, Physical Review B [J]. 2004: 70 184101-1-4.

DOI: 10.1103/physrevb.70.184101

Google Scholar