Legendre Collocation Solution to Fractional Ordinary Differential Equations

Article Preview

Abstract:

In this paper, we propose an efficient numerical method for ordinary differential equation with fractional order, based on Legendre-Gauss-Radau interpolation, which is easy to be implemented and possesses the spectral accuracy. We apply the proposed method to multi-order fractional ordinary differential equation. Numerical results demonstrate the effectiveness of the approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

601-605

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Mainardi: Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi (eds), (Springer, New York 1997).

DOI: 10.1007/978-3-7091-2664-6

Google Scholar

[2] I. Podlubny: Fractional Differential Equations( Academic Press, London 1999).

Google Scholar

[3] K. Diethelm: The Analysis of Fractional Differential Equations(Springer 2010).

Google Scholar

[4] K. S. Kilbas, H. M. Srivastava and J. J. Trujillo: Theory and Applications of Fractional Differential Equations(North-Holland Mathematics Studies, Volume 204, 2006).

DOI: 10.1016/s0304-0208(06)80001-0

Google Scholar

[5] K. S. Miller and B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations(John Wiley and Sons, Inc., New York 1993).

Google Scholar

[6] S. G. Samko, A. A. Kilbas and O. I. Marichev: Fractional Integrals and Derivatives: Theory and Applications(Gordon and Breach 1993).

Google Scholar

[7] M. J. A. Tenreiro, V. Kiryakova and F. Mainardi: Commun. in Nonl. Sci. Numer. Simul. Vol. 16(3) (2011), p.1140.

Google Scholar

[8] N. H. Sweilam and M. M. Khader: Int. J. Computer Math. Vol. 87(5)(2010), p.1120.

Google Scholar

[9] Z. G. Deng and G. C. Wu: Rom. J. Phys. Vol. 56(7)(2011), p.868.

Google Scholar

[10] C. P. Li and Y. H. Wang: Comput. Math. Appl. Vol. 57(2009), p.1672.

Google Scholar

[11] I. Hashim, O. Abdulaziz and S. Momani: Commum. in Nonl. Sci. Numer. Simul. Vol. 14(3) (2009), p.674.

Google Scholar

[12] Z. B. Li and J. H. He: Math. Comput. Appl. Vol. 15(5)(2010), p.970.

Google Scholar

[13] Z. B. Li and J. H. He: Nonl. Sci. Letters A Vol. 2(2011), p.12.

Google Scholar

[14] E. A. Rawashdeh: Appl. Math. Comput. Vol. 176(1)(2006), p.1.

Google Scholar

[15] W. H. Deng: SIAM J. Numer. Anal. Vol. 47(2008), p.204.

Google Scholar

[16] O. P. Agrawal: J. Math. Anal. Appl. Vol. 337(2008), p.1.

Google Scholar

[17] X. J. Li and C. J. Xu: SIAM J. Numer. Anal. Vol. 47(3)(2009), p.2108.

Google Scholar

[18] X.J. Li and C. J. Xu: Commun. Comput. Phys. Vol. 8(5)(2010), p.1016.

Google Scholar

[19] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien: Appl. Math. Modelling Vol. 35(2011), p.5662.

Google Scholar

[20] Z. Q. Wang and B. Y. Guo: J. Sci. Comput. Vol. 52(2012), p.226.

Google Scholar