[1]
J.H. Xu, X.G. Zhang and Y.D. Li. The new development of support vector machine. Control and decision making, 2004, 19(5): 481-484.
Google Scholar
[2]
S.X. Du and T.J. Wu. Support vector machine method for regression estimation. Journal of system simulation, 2004, 15(11): 1580-1585.
Google Scholar
[3]
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300.
Google Scholar
[4]
M. Miller. Cloud computing. Beijing: China Machine Press, (2009).
Google Scholar
[5]
Suykens J A K, De Brabanter J, Gesel T V. Least squares support vector machines. World Scientific, (2002).
DOI: 10.1142/5089
Google Scholar
[6]
Suykens J A K, De Brabanter J, Lucas L, et al. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 2002, 48 (1): 85-105.
DOI: 10.1016/s0925-2312(01)00644-0
Google Scholar
[7]
Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 1988, 52(1-2): 479-487.
DOI: 10.1007/bf01016429
Google Scholar
[8]
Espinoza M, Suykens J A K, Moor B D. Fixed-size least squares support vector machines: A large scale application in electrical load forecasting. Computational Management Science, 2006, 3 (2): 113-129.
DOI: 10.1007/s10287-005-0003-7
Google Scholar