XPS Analysis Pyrolytic Char of Cellulose with Different Crystallinity Based on Ionic Liquid Regeneration

Article Preview

Abstract:

Ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was used to dissolve cellulose and cellulose was regenerated from the solution by two different methods. Original cellulose (OC) and regenerated cellulose have different crystallinity. The morphological characteristic of different crystallinity cellulose was analyzed by the scanning electron microscopy (SEM). The cellulose pyrolysis experiment was performed on a horizontal tube furnace reactor and a wire mesh reactor. The pyrolytic char was prepared at 300°C with 50% char yield. Surface structure of original char and water washed char prepared from above two reactors was analyzed by the XPS. The results reveal the impact of secondary reaction between the volatile and char and crystallinity on the char structure during cellulose pyrolysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-135

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Ragauskas: Science, 2006. 311(5760), pp.484-489.

Google Scholar

[2] Z.H. Wang, A.G. Mcdonald: Journal of Analytical and Applied Pyrolysis, 2013. 100, pp.56-66.

Google Scholar

[3] A. Broido, A.C. Javier Son: Journal of Applied Polymer Science, 1973. 17(12), pp.3627-3635.

Google Scholar

[4] A.G. Bradbury, Y. Sakai, F. Shafizadeh: Journal of Applied Polymer Science, 1979. 23(11), pp.3271-3280.

Google Scholar

[5] J. Lédé, H.Z. Li, J. Villermaux: Journal of analytical and applied pyrolysis, 1987. 10(4), pp.291-308.

Google Scholar

[6] O. Boutin, M. Ferrer, J. Lédé: Journal of Analytical and Applied Pyrolysis, 1998. 47(1): pp.13-31.

Google Scholar

[7] G.Y. Zhu, X. Zhu, Z.B. Xiao: Journal of Analytical and Applied Pyrolysis, 2012. 94, pp.126-130.

Google Scholar

[8] Y. Yu, D. Liu, H.W. Wu: Energy & Fuels, 2012. 26(12), pp.7331-7339.

Google Scholar

[9] Li, C: Fuel, 2013. 112, pp.609-623.

Google Scholar

[10] R.D. Rogers, K.R. Seddon: Science, 2003. 302(5646), pp.792-793.

Google Scholar

[11] R.P. Swatloski, S.K. Spear, J.D. Holbrey: Journal of the American Chemical Society, 2002. 124(18), pp.4974-4975.

Google Scholar

[12] S.D. Zhu, Y.X. Wu, Q.M. Chen: Green Chem., 2006. 8(4), pp.325-327.

Google Scholar

[13] X. Gong, B. Zhang, Y. Huang: Energy & Fuels, 2013, 28 (1), 95-103.

Google Scholar

[14] B. Gui, Q. Yu, D. Wan: Proceedings of the Combustion Institute, 2013. 34(2), pp.2321-2329.

Google Scholar

[15] X. Gong, Y. Yu, X.P. Gao: Energy & Fuels (2014).

Google Scholar

[16] L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad: Textile Research Journal, 1959. 29, pp.786-794.

Google Scholar

[17] J. Zhang, J. Luo, D. Tong: Carbohydrate Polymers 2010, 79 (1), pp.164-169.

Google Scholar

[18] S. Kelemen, M. Afeworki: Energy & fuels, 2002, 16(6), pp.1450-1462.

Google Scholar

[19] Q. Liu, S. Wang, K. Wang: Acta Physico-Chimica Sinica, 2008, 24 (11), p.1957-(1963).

Google Scholar

[20] O. Boutin, M. Ferrer, J. Lédé: Journal of analytical and applied pyrolysis, 1998, 47 (1), pp.13-31.

Google Scholar