Control of Ice Crystal Growth by Different Surfactants in Ice Slurries

Article Preview

Abstract:

Ice crystal growth problem have attracted special attention due to in heat transfer deterioration and pump power consumption increasing, by adding very small amount of suitable additives can control the ice crystal growth. This paper investigates ice crystal growth in isothermal condition when adding four different additives, and then calculate the energy between surfactants and ice crystal to explain the effect of different additives. The results indicate that the interaction is Coulomb interaction and Van der Waals interaction for anionic and nonionic surfactant respectively. This method provides a method to explore the mechanism of controlling ice crystal growth with surfactant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-199

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Ayel, O. Lottin, H. Peerhossain: J. Refrig Vol. 26 (2003), p.95–107.

Google Scholar

[2] P.W. Egolf, M. Kauffeld: J. Refrig Vol. 28 (2005), p.4–12.

Google Scholar

[3] M. Kauffeld, M.J. Wang, V. Goldstein, K.E. Kasza: J. Refrig Vol. 33 (2010), p.1491–1505.

Google Scholar

[4] T. Inada P.R. Modak: Chem. Eng. Sci Vol. 61 (2006), pp.3149-3158.

Google Scholar

[5] H. Inaba, T. Inada, A. Horibe, H. Suzuki, H. Usui: J. Refrig Vol. 28 (2005), pp.20-26.

Google Scholar

[6] T. Akiya, A. Endo, M. Owa, M. Nakaiwa, T. Nakane, K. One, H. Tanaka, T. Nakata, S. Tomiyama: Proceedings of Eighth International Conference on Thermal Energy Storage (TERRASTOCK 2000), Stuttgart, p.677–80.

Google Scholar

[7] S.S. Lu, T. Inada, A. Yabe, X. Zhang, S. Grandum: Proceedings of Symposium on Energy Engineering in the 21st Century(2000), Hong Kong, p.860–865.

Google Scholar

[8] H. Usui, P.R. Modak, H. Suzuki, O. OkumaJ: Chem. Eng. Jpn Vol. 37( 2004), pp.15-22.

Google Scholar

[9] C. Lo, J. Zhang, P. Somasundaran, J. Lee: J. Colloid Interface Sci. 376(2012), p.173–176.

Google Scholar

[10] J. C. Chantelle, M. Leclèére at el: Chem Sci Vol. 3 (2012), p.1408–1416.

Google Scholar

[11] Kitamoto, Dai. et al: Biotechnol. Prog Vol. 17( 2001), pp.362-365.

Google Scholar

[12] Jorov Alexander, Zhorov Boris S, Yang Daniel S C: Protein ScienceVol. 13(2004), pp.1524-1537.

Google Scholar

[13] Li L. F, Liang X. X, Li Q. Z:J. Inner Mongolia Agric. Univ. (Nat. Sci. Edn. ) Vol 41(2010), pp.301-306.

Google Scholar

[14] C. E. Smith, H.G. Schwartzberg: Biotechnol. Progr Vol. 1(1985), pp.111-20.

Google Scholar

[15] P. Pronk, T.M. Hansen, C.A. Ferreira, G.J. Witkamp: J. Refrig Vol. 28(2005), pp.27-36.

Google Scholar

[16] A. Mersmann: Crystallization technology handbook, 2nded(Marcel Dekker, New York2001).

Google Scholar

[17] Jorov Alexander, Zhorov Boris S, Yang Daniel S C: Protein Sci Vol. 13( 2004), pp.1524-1537.

Google Scholar

[18] Bondi, J. Phys. Chem., 1964, 68: 441.

Google Scholar

[19] Myers D: Surface, Interface, and Colloids: Principles and Application(Wildly-VCH, New York1999).

Google Scholar