Removal of Mn(II) from Aqueous Solution Using Saponified Garlic Peel

Article Preview

Abstract:

The removal of Mn (II) ion by saponified garlic peel (S-GP) was investigated using batch adsorption. SEM and FT-IR were employed to investigate the physical and chemical properties of S-GP. The adsorption was evaluated as a function of initial metal ion concentration, contact time and temperature. The maximum adsorption capacity for Mn (II) was 0.51 mol/kg, and the adsorption process followed the Langmuir model. Pseudo-second-order models fitted the experimental data well and kinetic parameters, rate constants, equilibrium sorption capacity and related correlation coefficients at various temperatures were calculated and discussed. A possible adsorption mechanism based on a cation exchange was proposed for the adsorption of Mn (II).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-386

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Apak, E. Tütem, M. Hügül, J. Hizal, Water Res Vol. 32 (1998), p.430.

Google Scholar

[2] S.S. Gupta, K.G. Bhattacharyya, Adv Colloid Interface Vol. 16(2011), p.39.

Google Scholar

[3] F. Güzel, H. Yakut, G. Topal, J Hazard Mater Vol. 153(2008), p.1275.

Google Scholar

[4] Z. Djedidi, M. Bouda, M.A. Souissi, R.B. Cheikh, G. Mercier, R.D. Tyagi, J.F. Blais, J Hazard Mater Vol. 172 (2009), p.1372.

Google Scholar

[5] Z.A. ALOthman, M. Naushad, Inamuddin, Chem. Eng. J. Vol. 172 (2011), p.369.

Google Scholar

[6] M. Lundh, L. Jönsson, J. Dahlquist, Water Res Vol. 34(2000), p.21.

Google Scholar

[7] S.W. Lin, R.M.F. Navarro, Chemosphere Vol. 39(1999), p.1809.

Google Scholar

[8] D.W. O'Connell, C. Birkinshaw, T.F. O'Dwyer, Bioresour Technol Vol. 99(2008), p.6709.

Google Scholar

[9] X. S. Wang, H.H. Miao, W. He, H.L. Shen, J Chem Eng Data Vol. 56(2011), p.444.

Google Scholar

[10] I. Ali, V.K. Gupta, Nat Protoc Vol. 1(2006), p.2661.

Google Scholar

[11] K. Inoue, H. Paudyal, H, Nakagawa, H. Kawakita, K. Onto, Hydrometallurgy Vol. 104(2010), p.123.

Google Scholar

[12] B.K. Biswas, J. Inoue, H. Kawakita, K. Ohto, K. Inoue, J Hazard Mater Vol. 172(2009), p.721.

Google Scholar

[13] A. Mittal, L. Kurup(Krishnam), V.K. Gupta. J Hazard Mater Vol. 117 (2005), p.171.

Google Scholar

[14] K.L. Goodyear, S. McNeill, Sci Total Environ Vol. 229(1999), p.1.

Google Scholar

[15] R.P. Dhakal, K.N. Ghimire, K. Inoue, Hydrometallurgy Vol. 79(2005), p.182.

Google Scholar

[16] K. M. Khoo, Y. P. Ting, Biochem Eng J, Vol. 8(2001), p.51.

Google Scholar