Efficiency Optimization of Organic Pollutant Removal in Pharmaceutical Wastewater by Microwave-Assisted Fenton-Like Technology

Article Preview

Abstract:

Ferric sulfate or cupric nitrate was utilized as catalyst, hydrogen peroxide was utilized as oxidant, with the assistant of microwave (MW), the efficiency of Fenton-like process was improved, which included increasing TOC removal and apparent reaction rate of TOC removal, reducing the catalyst dose and oxidant dose, shortening the reaction time. Under MW radiation, the technology not only utilized dissolving ferric iron, but also used ferric flocculation, which could be seen by eyes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

406-410

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Daud N. K., Hameed B. H. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst[J]. Journal of Hazardous Materials, 2010, 176(1): 938-944.

DOI: 10.1016/j.jhazmat.2009.11.130

Google Scholar

[2] Muruganandham M., Swaminathan M. Decolourisation of reactive orange 4 by Fenton and photo-Fenton oxidation technology[J]. Dyes and Pigments, 2004, 63(3): 315-321.

DOI: 10.1016/j.dyepig.2004.03.004

Google Scholar

[3] Sirtori C., Zapata A., Oller I., et al. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment[J]. Water Research, 2009, 43(3): 661-668.

DOI: 10.1016/j.watres.2008.11.013

Google Scholar

[4] Catalkaya E. C., Kargi F. Effects of operating parameters on advanced oxidation of diuron by the Fenton's reagent: A statistical design approach[J]. Chemosphere, 2007, 69(3): 485-492.

DOI: 10.1016/j.chemosphere.2007.04.033

Google Scholar

[5] Santos M. S. F., Alves A., Madeira L. M. Paraquat removal from water by oxidation with Fenton's reagent[J]. Chemical Engineering Journal, 2011, 175(11): 279-290.

DOI: 10.1016/j.cej.2011.09.106

Google Scholar

[6] Boussahel R., Harik D., Mammar M., et al. Degradation of obsolete DDT by Fenton oxidation with zero-valent iron[J]. Desalination, 2007, 206(1): 369-372.

DOI: 10.1016/j.desal.2006.04.059

Google Scholar

[7] Martins R. C., Silva N. A., Quinta-Ferreira R. M. Ceria based solid catalysts for Fenton's depuration of phenolic wastewaters, biodegradability enhancement and toxicity removal[J]. Applied Catalysis B: Environmental, 2010, 99(1): 135-144.

DOI: 10.1016/j.apcatb.2010.06.010

Google Scholar

[8] Liou R. M., Chen S. H., Hung M. y., et al. Fe(III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution[J]. Chemosphere, 2005, 59(1): 117-125.

DOI: 10.1016/j.chemosphere.2004.09.080

Google Scholar

[9] Hu X. D. Pharmaceutical wastewater treatment technologies and case studies[J]. Beijing: Chemical publisher, 2008. (In Chinese).

Google Scholar

[10] Jamil T. S., Ghaly M. Y., EI-Seesy I. E., et al. A comparative study among different photochemical oxidation process to enhance the biodegradability of paper mill wastewater[J]. Jounral of Hazardous Materials, 2011, 185(1): 353-358.

DOI: 10.1016/j.jhazmat.2010.09.041

Google Scholar

[11] Moradas G., Auresenia J., Gallardo S., et al. Biodegradability and toxicity assessment of trans-chlordane photochemical treatment[J]. Chemoshere, 2008, 73(9): 1512-1517.

DOI: 10.1016/j.chemosphere.2008.07.035

Google Scholar

[12] Körbahti B. K., Aktas N., Tanyolac A. Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology[J]. Journal of Hazardous Materials, 2007, 148(1): 83-90.

DOI: 10.1016/j.jhazmat.2007.02.005

Google Scholar

[13] Lei H.Y., Li H. L., Li Z., et al. Electrol-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode[J]. Process Safety and Environmental Protection, 2010, 88(6): 431-438.

DOI: 10.1016/j.psep.2010.06.005

Google Scholar

[14] Weng C. H., Lin Y. T., Chang C. K., et al. Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst[J]. Ultrasonics Sonochemistry, 2013, 20(3): 970-977.

DOI: 10.1016/j.ultsonch.2012.09.014

Google Scholar

[15] Liu S.T., Huang J., Ye Y., et al. Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution[J]. Chemical Engineering Journal, 2013, 216(1): 586-590.

DOI: 10.1016/j.cej.2012.11.003

Google Scholar

[16] Atta A. Y., Jibril B. Y., Al-Waheibi T. K., et al. Microwave-enhanced catalytic degradation of 2-nitrophenol on alumina-suppored copper oxides[J]. Catalysis Communications, 2012, 26(12): 112-116.

DOI: 10.1016/j.catcom.2012.04.033

Google Scholar

[17] Wu D. L., Yang Z. Z., Wang W., et al. Ozonation as an advanced oxidant in treatment of bamboo industry wastewater[J]. Chemosphere, 2012, 88(9): 1108-1113.

DOI: 10.1016/j.chemosphere.2012.05.011

Google Scholar

[18] Zhang L. S., Yang G. P., Wang W. Ozone oxidation in water treatment[J]. Water purification technology, 2003, 22(1): 9-11, 31. (In Chinese).

Google Scholar