[1]
Information on http: /www. organdonor. gov/index. html.
Google Scholar
[2]
X.M. Peter, J. Elisseeff, Scaffolding In Tissue Engineering, first ed., CRC Press, United State, (2005).
Google Scholar
[3]
J. Venugopal, S. Low, T.C. Aw, S. Ramakrishna, Interaction of Cells and Nanofiber Scaffolds in Tissue Engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterial. 84B (2008) 34-48.
DOI: 10.1002/jbm.b.30841
Google Scholar
[4]
N. Sultana and T. H. Khan: Water Absorption and Diffusion Characteristics of Nanohydroxyapatite (nHA) and Poly(hydroxybutyrate-co-hydroxyvalerate-) Based Composite Tissue Engineering Scaffolds and Nonporous Thin Films. J Nanomater, vol. 2013, Article ID 479109, pp.1-8 (2013).
DOI: 10.1155/2013/479109
Google Scholar
[5]
R. Sinha, G.J. Kim, S. Nie, D.M. Shin, Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery, Molecular Cancer Therapeutics. 8 (2006) 1909-(1917).
DOI: 10.1158/1535-7163.mct-06-0141
Google Scholar
[6]
J. Venugopal, S. Low, T.C. Aw, S. Ramakrishna, Interaction of Cells and Nanofiber Scaffolds in Tissue Engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterial. 84B (2008) 34-48.
DOI: 10.1002/jbm.b.30841
Google Scholar
[7]
W. Liu, S. Thomopoulos, Y. Xia, Electrospun Nanofibers for Regenerative Medicine.
Google Scholar
[8]
T.G. Kim, D.S. Lee, G.P. Tae, Controlled protein release from electrospun biodegradable fiber mesh composed of poly(caprolactone) and poly(ethylene oxide), International Journal of Pharmaceutics. 338 (2007) 276–283.
DOI: 10.1016/j.ijpharm.2007.01.040
Google Scholar
[9]
L.S. Nair, S. Bhattacharya, C.T. Laurencin, Nanotechnology and tissue engineering: the scaffold based approach, Nanotechnol Life Sci. 8 (2008) 1-6.
Google Scholar
[10]
N. Sultana, T.H. Khan, In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering, Journal of Nanomaterials, 2012 (2012).
DOI: 10.1155/2012/190950
Google Scholar
[11]
D. Kołbuk, P. Sajkiewicz, K. Maniura-Weber, G. Fortunato, Structure and morphology of electrospun polycaprolactone/gelatine nanofibres, European Polymer Journal. 49 (2013) 2052-(2061).
DOI: 10.1016/j.eurpolymj.2013.04.036
Google Scholar
[12]
D. Kai, M.P. Prabhakaran, B. Stahl, M. Eblenkamp, E. Wintermantel, S. Ramakrishma, Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications, Nanotechnology. 23 (2012).
DOI: 10.1088/0957-4484/23/9/095705
Google Scholar
[13]
L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna, Electrospun poly(Ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials. 29 (2008) 4532-4539.
DOI: 10.1016/j.biomaterials.2008.08.007
Google Scholar
[14]
M.P. Prabhakaran, J.R. Venugopal, S. Ramakrishna, Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substracts for nerve tissue engineering, Biomaterials. 30 (2009) 4996-5003.
DOI: 10.1016/j.biomaterials.2009.05.057
Google Scholar
[15]
M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer-Polycarprolactone in 21st century, Progress in Polymer Science. 35 (2010) 1217-1256.
DOI: 10.1016/j.progpolymsci.2010.04.002
Google Scholar
[16]
X. Yang, F. Yang, X.F. Walboomers, M. Fan, J.A. Jansen, The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds, Journal of Biomedical Materials Research Part A. 93A (2010) 247-257.
DOI: 10.1002/jbm.a.32535
Google Scholar
[17]
B. Feng, H. Tu, H. Yuan, H. Peng, Y. Zhang, Acetic-Acid-Mediated Miscibility toward Electrospinning Homogeneous Composite Nanofibers of GT/PCL, Biomacromolecules. 13 (2012) 3917-3925.
DOI: 10.1021/bm3009389
Google Scholar
[18]
G. Tronci, A.T. Neffe, B.F. Pierce, A. Lendlein, An entropy–elastic gelatin-based hydrogel system, J. Mater. Chem. 20 (2010) 8875-8884.
DOI: 10.1039/c0jm00883d
Google Scholar
[19]
D. Gupta, J. Venugopal, M.P. Prabhakaran, V.R.G. Dev, S. Low, A.T. Choon, S. Ramakrishna, Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering, Acta Biomaterialia. 5 (2009) 2560-2569.
DOI: 10.1016/j.actbio.2009.01.039
Google Scholar
[20]
Y. Zhang, H. Quyang, C.T. Lim, S. Ramakrishna, Z.M. Huang, Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds, Wiley InterScience. (2004).
DOI: 10.1002/jbm.b.30128
Google Scholar
[21]
F. Roozbahani, N. Sultana, A. F. Ismail, and Hamed Nouparvar, Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application, Journal of Nanomaterials. 2013(2013).
DOI: 10.1155/2013/641502
Google Scholar