[1]
X.M. Peter and E. Jennifer: Scaffolding in Tissue Engineering. Taylor & Francis Group, Boca Raton, London, NY (2006).
Google Scholar
[2]
I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim and C.S. Cho: Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. Vol. 26 (2008), pp.1-21.
DOI: 10.1016/j.biotechadv.2007.07.009
Google Scholar
[3]
Y. Su, L. Xiaoqiang, T. Lianjiang, H. Chen and M. Xiumei: Poly (l-lactide-co-ε-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer Vol. 50 (2009), pp.4212-4219.
DOI: 10.1016/j.polymer.2009.06.058
Google Scholar
[4]
G. Tang, H. Zhang, Y. Zhao, X. Li, X. Yuan and M. Wang: Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres. J. Mater. Sci.: Mater. Med. Vol. 23 (2012), pp.419-429.
DOI: 10.1007/s10856-011-4493-2
Google Scholar
[5]
B. Duan and M. Wang: Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Poly. Degrad. Stab. Vol. 95 (2010), pp.1655-1664.
DOI: 10.1016/j.polymdegradstab.2010.05.022
Google Scholar
[6]
V. Coccoli, A. Luciani, S. Orsi, V. Guarino, F. Causa and P.A. Netti: Engineering of poly(ε-caprolactone) microcarriers to modulate protein encapsulation capability and release kinetic. J. Mater. Sci.: Mater. Med Vol. 19 (2008), pp.1703-1711.
DOI: 10.1007/s10856-007-3253-9
Google Scholar
[7]
V.R. Sinha, K. Bansai, R. Kaushik, R. Kumria and A. Trehan: Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int. J. Pharm. Vol. 278 (2004), pp.1-23.
DOI: 10.1016/j.ijpharm.2004.01.044
Google Scholar
[8]
S.C. Neves, L.S.M. Teixeira, L. Moroni, R.L. Reis, C.A.V. Blitterswijk, N.M. Alves, M. Karperien and J.F. Mano: Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomat. Vol. 32 (2011), pp.1068-1079.
DOI: 10.1016/j.biomaterials.2010.09.073
Google Scholar
[9]
X. Liu, L. Ma, Z. Mao and C. Gao: Chitosan-based biomaterials for tissue repair and regeneration. Adv. Poly. Sci. Vol. 244 (2011), pp.81-128.
Google Scholar
[10]
N. Sultana and M. Wang: PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication Vol. 4 (2012).
DOI: 10.1088/1758-5082/4/1/015003
Google Scholar
[11]
N. Sultana and T.H. Khan: In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. J. Nanomat Vol. 2012 (2012).
DOI: 10.1155/2012/190950
Google Scholar
[12]
R. Liu, G. Ma, F.T. Meng and Z.G. Su: Preparation of uniform-sized PLA microcapsules by combining shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method. J. Cont. Release Vol. 103 (2005), pp.31-43.
DOI: 10.1016/j.jconrel.2004.11.025
Google Scholar
[13]
Y. Yang, G. Tang, H. Zhang, Y. Zhao, X. Yuan, Y. Fan and M. Wang. Controlled release of BSA by microsphere-incorporated PLGA scaffolds under cyclic loading. Mat. Sci. Eng.: C Vol. 31 (2011), pp.350-356.
DOI: 10.1016/j.msec.2010.10.006
Google Scholar
[14]
N. Sultana and T. H. Khan: Water Absorption and Diffusion Characteristics of Nanohydroxyapatite (nHA) and Poly(hydroxybutyrate-co-hydroxyvalerate-) Based Composite Tissue Engineering Scaffolds and Nonporous Thin Films. J Nanomater, vol. 2013, Article ID 479109, pp.1-8 (2013).
DOI: 10.1155/2013/479109
Google Scholar
[15]
F. Roozbahani, N. Sultana, A. F. Ismail, and Hamed Nouparvar, Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application, Journal of Nanomaterials. 2013(2013).
DOI: 10.1155/2013/641502
Google Scholar