[1]
J. B. Nguyen, F.A. Tanious, W.D. Wilson, Biosensor-Surface Plasmon Resonance: Quantitative Analysis of Small Molecule–Nucleic Acid Interactions. 42 (2007) 150–161.
DOI: 10.1016/j.ymeth.2006.09.009
Google Scholar
[2]
J.A. Lopez, F. Gonzalez, F.A. Bonilla, G. Zambrano, M.E. Gomez, Synthesis and Characterization of Fe3O4 Magnetic Nanofluid, Revista Latinoamericana de Metalurgiay Materiales. 30 (2010) 60–66.
Google Scholar
[3]
R.E. Rosensweig, Ferrohydrodynamics, (1sted. ) Dover, New York, (1997).
Google Scholar
[4]
K. Parekh, H.S. Lee, Magnetic Field Induced Enhancement in Thermal Conductivity of Magnetitenanofluid, J. Appl. Phys. 107 (2010) 09A310.
Google Scholar
[5]
A. Gavili, F. Zabihi, T.D. Isfahani, J. Sabbaghzadeh, The Thermal Conductivity of Water Base Ferrofluids under Magnetic Field, Exp. Therm. Fluid Sci. 41 (2012) 94–98.
DOI: 10.1016/j.expthermflusci.2012.03.016
Google Scholar
[6]
M. Nazififard, N. Mohammadreza, J. Khosrow, Y.S. Kune, Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry. Science and Technology of Nuclear Installations. (2012).
DOI: 10.1155/2012/928406
Google Scholar
[7]
X. Wang, X. Xu, S.U.S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Tr. 13 (1999) 474-480.
Google Scholar
[8]
R.L. Hamilton, O.K. Crosser, Thermal Conductivity of Heterogeneous Two Component System, Industrial and Engineering Chemistry Fundamentals. 1 (1962) 187–191.
DOI: 10.1021/i160003a005
Google Scholar
[9]
L.S. Sundar, K.S. Manoj, C.M.S. Antonio, Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications, Int. Commun. Heat Mass Transf. 44 (2013) 7–14.
DOI: 10.1016/j.icheatmasstransfer.2013.02.014
Google Scholar
[10]
B.C. Pak, Y.I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transf. 11 (1998) 151–170.
DOI: 10.1080/08916159808946559
Google Scholar
[11]
V. Gnielinski, On heat transfer in tubes, Int. J. Heat Mass Transf. 63 (2013) 134-140.
Google Scholar
[12]
S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Heat Transfer Behaviors of Nanofluids in a Uniformly Heated Tube, Super Lattices and Microstructures. 35 (2004) 543–557.
DOI: 10.1016/j.spmi.2003.09.012
Google Scholar
[13]
L.S. Sundar, M.T. Naik, K.V. Sharma, M.K. Singh, T.C. Siva Reddy, Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid, Exp. Therm. Fluid Sci. 37 (2012) 65–71.
DOI: 10.1016/j.expthermflusci.2011.10.004
Google Scholar
[14]
K.M. Mostafa, H. Majid, Modeling of Turbulent Forced Convective Heat Transfer and Friction Factor in a Tube for Fe3O4 Magnetic Nanofluid with Computational Fluid Dynamics, Int. Commun. Heat Mass. 39 (2012) 1293–1296.
DOI: 10.1016/j.icheatmasstransfer.2012.07.003
Google Scholar