The Use of Lattice Boltzmann Numerical Method for Prediction of Nanofluid Flow in a Square Enclosure

Article Preview

Abstract:

In this paper, we contribute to another record of computational results by lattice Boltzmann on the flow behavior of nanofluid in a differentially heated enclosure. In the present study, numerical prediction of CuO and Al2O3 nanofluid, Rayleigh number ranges 103 - 105, aspect ratios of 0.5, 1.0 and 2.0 and nanoparticle volume fractions of 1, 3, 5 and 10% were performed. The results show that, for both nanofluids, increases the volume fraction lead to increase of the average Nusselt number for the whole range of aspect ratios and Rayleigh numbers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

367-370

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, Lattice Boltzmann method for microfluidics: models and applications, Microfluidic Nanofluidic. 10 (2011) 1-28.

Google Scholar

[2] C.S.N. Azwadi, M.R.A. Rahman, Cubic interpolated pseudo particle (CIP) - thermal BGK lattice Boltzmann numerical scheme for solving incompressible thermal fluid flow problem, Malaysian Journal of Mathematical Sciences. 3 (2009) 183-202.

Google Scholar

[3] M.R.M. Zin, C.S.N. Azwadi, An accurate numerical method to predict fluid flow in a shear driven cavity, International Review of Mechanical Engineering. 4 (2010) 719-725.

Google Scholar

[4] N. Pelevi, T.H.V.D. Meer, Numerical investigation of the effective thermal conductivity of nano-fluids using the lattice Boltzmann model, Int. J. Therm. Sci. 62 (2012) 154-159.

DOI: 10.1016/j.ijthermalsci.2011.09.022

Google Scholar

[5] Y.T. Yang, F.H. Lai, Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method, Int. Commun. Heat Mass. 38 (2011) 607–614.

DOI: 10.1016/j.icheatmasstransfer.2011.03.010

Google Scholar

[6] G.H.R. Kefayati, S.F. Hosseinizadeh, M. Gorji, H. Sajjadi, Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid, Int. Commun. Heat Mass. 38 (2011) 798–805.

DOI: 10.1016/j.icheatmasstransfer.2011.03.005

Google Scholar

[7] A. Kamyar, R. Saidur, M. Hasanuzzaman, Application of Computational Fluid Dynamics (CFD) for nanofluids, Int. J. Heat Mass Tran. 55 (2012) 4104–4115.

DOI: 10.1016/j.ijheatmasstransfer.2012.03.052

Google Scholar

[8] H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, A.A.R. Darzi, Lattice Boltzmann simulation of nanofluid in lid-driven cavity, Int. Commun. Heat Mass. 37 (2010) 1528-1534.

DOI: 10.1016/j.icheatmasstransfer.2010.08.004

Google Scholar

[9] M. Mahmoodi, S.M. Hashemi, Numerical study of natural convection of a nanofluid in Cshaped enclosures, Int. J. Therm. Sci. 55 (2012) 76-89.

Google Scholar

[10] E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass. 35 (2008) 657-665.

DOI: 10.1016/j.icheatmasstransfer.2007.11.004

Google Scholar

[11] F.J. Wasp, Solid–liquid slurry pipeline transportation. Berlin: Trans Tech, (1977).

Google Scholar