[1]
S.J. Tsorng, H. Capart, J.S. Lai, L.D. Young, Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow, Exp. Fluids. 40 (2006) 314–328.
DOI: 10.1007/s00348-005-0070-0
Google Scholar
[2]
M. Han, C. Kim, M. Kim, S. Lee, Particle migration in tube flow of suspensions, J. Rheol. 43 (1999) 1157-1174.
DOI: 10.1122/1.551019
Google Scholar
[3]
J.P. Matas, J.F. Morris, E. Guazzelli, Inertial migration of rigid spherical particles in Poiseuille flow, J. Fluid Mech. 515 (2004) 171-195.
DOI: 10.1017/s0022112004000254
Google Scholar
[4]
P. Kosinski, A. Kosinska, A. C Hoffmann, Simulation of solid particles behaviour in a driven cavity flow, Powder Technology. 191 (2009) 327-339.
DOI: 10.1016/j.powtec.2008.10.025
Google Scholar
[5]
C.G. Ilea, P. Kosinski, A.C. Hoffmann, Three-dimensional simulation of a dust lifting process with varying parameters, Int. J. Multiphase Flow. 34 (2008) 869-878.
DOI: 10.1016/j.ijmultiphaseflow.2008.02.007
Google Scholar
[6]
E. S. Mickaily, S. Middleman, Hydrodynamic cleaning of a viscous film from the inside of a long tube, AlChE J. 39 (1993) 885-893.
DOI: 10.1002/aic.690390517
Google Scholar
[7]
C.S. Nor Azwadi, A.S. Ahmad Sofianuddin, K.Y. Ahmat Rajab, Transient removal of contaminants in cavity of mixed convection in a channel by constrained interpolated method. Applied mechanic and materials. 554 (2014) 312-316.
DOI: 10.4028/www.scientific.net/amm.554.312
Google Scholar
[8]
L.C. Fang, J.W. Cleaver, D. Nicolaou, Transient removal of a contaminated fluid from a cavity, Int. J. Heat Fluid Flow. 20 (1999) 605-613.
DOI: 10.1016/s0142-727x(99)00050-8
Google Scholar
[9]
L.C. Fang, Effect of mixed convection on transient hydrodynamic removal of a contaminant from a cavity, Int. J. Heat Mass Transfer. 46 (2003) 2039-(2049).
DOI: 10.1016/s0017-9310(02)00507-0
Google Scholar
[10]
T. Yabe, T. Ishikawa, P.Y. Wang, T. Aoki, Y. Kadotaand, F. Ikeda, A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two- and three-dimensional solvers, Comput. Phys. Commun. 66 (1991) 233-242.
DOI: 10.1016/0010-4655(91)90072-s
Google Scholar
[11]
T. Yabe, A universal cubic interpolation solver for compressible and incompressible fluids, Shock Waves, 1 (1991) 187-195.
DOI: 10.1007/bf01413793
Google Scholar