Thermogravimetric Kinetic Behavior of Malaysian Poultry Processing Dewatered Sludge (PPDS) during Combustion

Article Preview

Abstract:

The combustion characteristic and kinetic analysis of Malaysian poultry processing dewatered sludge (PPDS) from two different origins, namely as PPDS 1 and PPDS 2 using Thermogravimetric analysis (TGA) were examined. The non-isothermal step was practiced under oxidative atmosphere during the investigation. The temperature was ramped from 30oC to 1000oC at four different heating rates to allow the calculation of kinetic analysis parameter i.e. activation energy. Derivative thermogravimetric (DTG) curves for both samples resulted from TGA shows 3 different peaks. Calculation of apparent activation energy was adopted using iso-conventional model free method. The different of activation energy value embedded in each samples was due to the non-similarity of its fuel characteristic and combustion behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

433-437

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Marculescu and C. Stan, Poultry processing industry waste to energy conversion, Energy Procedia, vol. 6, p.550–557, Jan. (2011).

DOI: 10.1016/j.egypro.2011.05.063

Google Scholar

[2] A. B. A. Ibrahim, M. S. Aris, and Y. S. Chin, Development of Fuel Briquettes from Dewatered Poultry Sludge, vol. 9, p.469–476, (2012).

Google Scholar

[3] M. S. Aris, A.H. Abbas, A.B.A. Ibrahim, M.F.H.A. Muttalib, Fuel Characterization and Energy Prediction of Malaysian Poultry Processing 2012. pdf., Asian Journal of Scientific Research 6 (3), p.498–507, (2013).

DOI: 10.3923/ajsr.2013.498.507

Google Scholar

[4] H. A. M. Fadhil, A. Hassan, S. Aris, A. Abdalla, and N. Aniza, The Prospects of Electricity Generation from Poultry Processing Dewatered Sludge (PPDS) in Malaysia, Adv. Mater. Res., vol. 970, p.228–232, Jun. (2014).

DOI: 10.4028/www.scientific.net/amr.970.228

Google Scholar

[5] A. Khawam and D. R. Flanagan, Role of isoconversional methods in varying activation energies of solid-state kinetics, Thermochim. Acta, vol. 436, no. 1–2, p.101–112, Oct. (2005).

DOI: 10.1016/j.tca.2005.05.015

Google Scholar

[6] C. D. Doyle, Estimating Isothermal Life from Thermogravimetric Data, J. Appl. Polym. Sci., vol. VI, no. 24, p.639–642, (1962).

DOI: 10.1002/app.1962.070062406

Google Scholar

[7] S. S. Idris, N. A. Rahman, and K. Ismail, Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA), Bioresour. Technol., vol. 123, p.581–591, (2012).

DOI: 10.1016/j.biortech.2012.07.065

Google Scholar

[8] M. E. Sanchez, M. Otero, X. Gómez, and a. Morán, Thermogravimetric kinetic analysis of the combustion of biowastes, Renew. Energy, vol. 34, no. 6, p.1622–1627, Jun. (2009).

DOI: 10.1016/j.renene.2008.11.011

Google Scholar

[9] T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn., vol. 707, no. 1952, (1965).

Google Scholar

[10] K. Slopiecka, P. Bartocci, and F. Fantozzi, Thermogravimetric analysis and kinetic study of poplar wood pyrolysis, Appl. Energy, vol. 97, p.491–497, Sep. (2012).

DOI: 10.1016/j.apenergy.2011.12.056

Google Scholar

[11] M. V Gil, D. Casal, C. Pevida, J. J. Pis, and F. Rubiera, Thermal behaviour and kinetics of coal/biomass blends during co-combustion., Bioresour. Technol., vol. 101, no. 14, p.5601–8, Jul. (2010).

DOI: 10.1016/j.biortech.2010.02.008

Google Scholar