[1]
LS Luo, M. Krafczyk, and W. Shyy, Lattice Boltzmann Method for Computational Fluid Dynamics, Encyclopedia of Aerospace Engineering, 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-75440-5.
DOI: 10.1002/9780470686652.eae064
Google Scholar
[2]
X. He and L. -S. Luo, Theory of lattice Boltzmann method; From the Boltzmann equation to the Lattice Boltzmann equation, Phys. Rev. E, 1997, 56-6811-6817.
DOI: 10.1103/physreve.56.6811
Google Scholar
[3]
A.A. Mohamed, Lattice Boltzmann Method, New York: Springer, (2011).
Google Scholar
[4]
M. Watari, M. Tsuthara, Possibility of constructing a multispeed Bratnagar-Gross-Krook thermal lattice Boltzmann method, Physical Review E 70 (2004) 1/016703-9/016703.
DOI: 10.1103/physreve.70.016703
Google Scholar
[5]
D. d'Humieres, "Generallize lattice Boltzmann equation . In Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, vol. 159, 1992, 45-458.
Google Scholar
[6]
J.S. Wu, Y.L. Shao, Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme, Int. J. for Numerical Methods in Fluids, 2004, 46: 921-937.
DOI: 10.1002/fld.787
Google Scholar
[7]
H.N. Chang, H.W. Ryn, D.H. Park, and Y.S. Park, Effect of external laminar channel flow on mass transfer in cavity, Int. J. Heat Mass Transfer 30 (1987) 2137-2149.
DOI: 10.1016/0017-9310(87)90092-5
Google Scholar
[8]
E.S. Mickaily, S. Middelman, M. Allen, Viscous flow over priodic surfaces, Cem. Eng. Commun 96 (1990) 69-79.
Google Scholar
[9]
C.S. Nor Azwadi and A.K. Aman, Simulation of flow over a cavity using multi-relaxation-time thermal lattice Boltzmann method, App. Mechanic and Material Vol. 554 (2014) 296-300.
DOI: 10.4028/www.scientific.net/amm.554.296
Google Scholar
[10]
L.C. Fang, Effect of mixed convection on transient hydrodynamic removal of contaminant from a cavity, International Journal of Heat and Mass Transfer 46 (2003) 2039-(2049).
DOI: 10.1016/s0017-9310(02)00507-0
Google Scholar
[11]
P. Lallemand, L-S. Luo, Theory of the Lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, In: Physics Review E 2000; 61: 6546-6562.
DOI: 10.1103/physreve.61.6546
Google Scholar