[1]
X. He and L. -S. Luo, Theory of lattice Boltzmann method; From the Boltzmann equation to the Lattice Boltzmann equation, Phys. Rev. E, 1997, 56-6811-6817.
DOI: 10.1103/physreve.56.6811
Google Scholar
[2]
R. Du, B. Shi and X. Chen, Multi-relaxation-time lattice Boltzmann model for incompressible flow, Phys. Letters A, 2006, 359-564-572.
DOI: 10.1016/j.physleta.2006.07.074
Google Scholar
[3]
I. Ginzburg, F. Verhaeghe, and D. d'Humi`eres, Comput. Phys. Commun. 3, 519 (2008).
Google Scholar
[4]
J.S. Wu, Y.L. Shao, Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme, Int. J. for Numerical Methods in Fluids, 2004, 46: 921-937.
DOI: 10.1002/fld.787
Google Scholar
[5]
C. Pan, L. -S. Luo, and C. Miller, Comput. Fluids 35, 898 (2006).
Google Scholar
[6]
P. Lallemand, L-S. Luo, Theory of the Lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, In: Physics Review E 2000; 61: 6546-6562.
DOI: 10.1103/physreve.61.6546
Google Scholar
[7]
L.C. Fang, J.W. Cleaver, D. Nicolaou, Transient removal of a contaminant fluid from a cavity, International Journal of Heat and Fluid Flow 20 (1999) 605-613.
DOI: 10.1016/s0142-727x(99)00050-8
Google Scholar
[8]
P. Kosinski, A. Kosinska, A.C. Hoffmann, simulation of solid particles behavior in a driven cavity flow, Journal of Powder Technology 191 (2009) 327-339.
DOI: 10.1016/j.powtec.2008.10.025
Google Scholar
[9]
P. Kosinski, A.C. Hoffmann, Modelling of Dust Lifting Using the Lagrangian Approach, International Journal of Multiphase Flow 31 (2005) 1097-1115.
DOI: 10.1016/j.ijmultiphaseflow.2005.07.003
Google Scholar
[10]
X. He and L.S. Luo, A priori derivation of the lattice Boltzmann equation, Physics Review E, Vol. 55, n. 6, pp. R6333-R6336, (1997).
DOI: 10.1103/physreve.55.r6333
Google Scholar
[11]
A. A. Mohamed, Lattice Boltzmann Method, New York: Springer, (2011).
Google Scholar