Effects of Numerical Simulation Geometry on Fluid Solid Particles Interaction Using Multi Relaxation Time Lattice Boltzmann Method

Article Preview

Abstract:

This paper describe a numerical analysis of the effects of numerical simulation geometry on fluid solid particles interaction using multi-relaxation time (MRT) lattice Boltzmann method (LBM). A point force scheme was applied for particles-fluid interactionand with MRT-LBM for fluid flow over a cavity to study the effects of various Aspect Ratio (AR) on the efficiency of particles removal. The results show that change in Aspect ratio causes a dramatic different in the flow pattern and particles removal efficiency. +

You might also be interested in these eBooks

Info:

Periodical:

Pages:

491-494

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. He and L. -S. Luo, Theory of lattice Boltzmann method; From the Boltzmann equation to the Lattice Boltzmann equation, Phys. Rev. E, 1997, 56-6811-6817.

DOI: 10.1103/physreve.56.6811

Google Scholar

[2] R. Du, B. Shi and X. Chen, Multi-relaxation-time lattice Boltzmann model for incompressible flow, Phys. Letters A, 2006, 359-564-572.

DOI: 10.1016/j.physleta.2006.07.074

Google Scholar

[3] I. Ginzburg, F. Verhaeghe, and D. d'Humi`eres, Comput. Phys. Commun. 3, 519 (2008).

Google Scholar

[4] J.S. Wu, Y.L. Shao, Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme, Int. J. for Numerical Methods in Fluids, 2004, 46: 921-937.

DOI: 10.1002/fld.787

Google Scholar

[5] C. Pan, L. -S. Luo, and C. Miller, Comput. Fluids 35, 898 (2006).

Google Scholar

[6] P. Lallemand, L-S. Luo, Theory of the Lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, In: Physics Review E 2000; 61: 6546-6562.

DOI: 10.1103/physreve.61.6546

Google Scholar

[7] L.C. Fang, J.W. Cleaver, D. Nicolaou, Transient removal of a contaminant fluid from a cavity, International Journal of Heat and Fluid Flow 20 (1999) 605-613.

DOI: 10.1016/s0142-727x(99)00050-8

Google Scholar

[8] P. Kosinski, A. Kosinska, A.C. Hoffmann, simulation of solid particles behavior in a driven cavity flow, Journal of Powder Technology 191 (2009) 327-339.

DOI: 10.1016/j.powtec.2008.10.025

Google Scholar

[9] P. Kosinski, A.C. Hoffmann, Modelling of Dust Lifting Using the Lagrangian Approach, International Journal of Multiphase Flow 31 (2005) 1097-1115.

DOI: 10.1016/j.ijmultiphaseflow.2005.07.003

Google Scholar

[10] X. He and L.S. Luo, A priori derivation of the lattice Boltzmann equation, Physics Review E, Vol. 55, n. 6, pp. R6333-R6336, (1997).

DOI: 10.1103/physreve.55.r6333

Google Scholar

[11] A. A. Mohamed, Lattice Boltzmann Method, New York: Springer, (2011).

Google Scholar