Fabrication of Stable Superhydrophobic Surface with Low Adhesion on Aluminum Foil

Article Preview

Abstract:

Metal aluminum surface can be corroded easily in acid and alkaline environment. Inspired by the self-cleaning lotus leaf, the development of superhydrophobic metal surfaces to prevent metals from corroding is enjoying tremendous popularity amongst scientists and engineers. In this work, superhydrophobic surface was obtained on aluminum foils via a facile neutral sol solution immersion process and post-modification in ethanol solution of heptadecafluoro-1,1,2,2-tetradecyl trimethoxysilane (FAS-17) solution through a hydrothermal synthesis technique. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and wettability of the produced films on aluminum substrates. The results indicated that the superhydrophobic surface, configured of a rough labyrinth structure with convexity and notch, has robust hydrophobility, which had a static water contact angle of 165.6 ± 2.8° and a water roll-off angle of <1°, exhibited long-term durability and stability in air. The present research work provides a new strategy for the simple preparation superhydrophobic films on aluminum foil for practical industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-84

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.F. Gao and L. Jiang: Nature Vol. 432 (2004), p.36.

Google Scholar

[2] X. Yao, Y.L. Song and L. Jiang: Adv. Mater. Vol. 23 (2011), p.719.

Google Scholar

[3] K.S. Liu and L. Jiang: Nanoscale Vol. 3 (2011), p.825.

Google Scholar

[4] D.M. Zang, R.W. Zhu, C.X. Wu, X.Q. Yu and Y.F. Zhang: Scripta Mater. Vol. 69 (2013), p.614.

Google Scholar

[5] N.L. Abbott, J.P. Folkers and G.M. Whitesides: Science Vol. 257 (1992), p.1380.

Google Scholar

[6] H. Gau, S. Herminghaus, P. Lenz and R. Lipowsky: Science Vol. 283 (1999), p.46.

Google Scholar

[7] R.M. Wu, S.Q. Liang, A.Q. Pan, Z.Q. Yuan, Y. Tang, X.P. Tan, D.K. Guan and Y. Yu: Applied Surface Science Vol. 258 (2012), p.5933.

Google Scholar

[8] X.J. Feng and L. Jiang: Adv. Mater. Vol. 18 (2006), p.3063.

Google Scholar

[9] M.L. Ma and R.M. Hill: Curr. Opin. Colloid Interface Sci. Vol. 11 (2006), p.193.

Google Scholar

[10] M.H. Jin, X.J. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li and L. Jiang: Adv. Mater. Vol. 17 (2005), p. (1977).

Google Scholar

[11] B.T. Qian and Z.Q. Shen: Langmuir Vol. 21 (2005), p.9007.

Google Scholar

[12] Y.F. Zhang, J. Wu, X.Q. Yu and H. Wu: Applied Surface Science Vol. 257 (2011), p.7928.

Google Scholar

[13] F.Z. Zhang, L.L. Zhao, H.Y. Chen, S.L. Xu, D.G. Evans and X. Duan: Angew. Chem. Int. Ed. Vol. 47 (2008), p.2466.

Google Scholar

[14] J.A. Howarter and J.P. Youngblood: Macromol. Rapid Commun. Vol. 29 (2008), p.455.

Google Scholar

[15] Z.G. Guo, W.M. Liu and B.L. Su: J. Colloid Interf. Sci. Vol. 353 (2011), p.335.

Google Scholar

[16] C.H. Chao, J.S. Huang and C.F. Lin: J. Phys. Chem. C Vol. 113 (2009), p.512.

Google Scholar

[17] A.B.D. Cassie and S. Baxter: Trans. Faraday Soc. Vol. 40 (1944), p.546.

Google Scholar

[18] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe: Langmuir Vol. 16 (2000), p.5754.

Google Scholar

[19] T. Liu, T. Liu, S.G. Chen, S. Cheng and Y.S. Yin: Chin. J. Inorg. Chem. Vol. 24 (2008), p.1859.

Google Scholar

[20] R.M. Wu, S.Q. Liang, Z.Q. Yuan, H. Chen and J. Deng: Adv. Mater. Res. Vol. 160-162 (2010), p.379.

Google Scholar

[21] K. Zhao, K.S. Liu, J.F. Li, W.H. Wang and L. Jiang: Scripta Mater. Vol. 60 (2009), p.225.

Google Scholar