Numerical Calculation of Temperature and Microstructure for Induction Surface Hardening

Article Preview

Abstract:

In the present paper, a new numerical model for calculating martensite microstructure in induction surface hardening processes is introduced. It takes into account the heating as well as the quenching process and uses the temperature history of a work piece to calculate martensite formation. The calculation is based on an empirical equation found by Koistinen and Marburger [1].A comparison between the heat distribution within a work piece at the end of the heating process and the distribution of martensite after quenching is performed for different process parameters. Thus, it is determined, in which case the temperature distribution is sufficient to predict the hardened layer and in which case the microstructure has to be calculated to receive accurate results. The model is verified by comparing simulation results with different experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-257

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. P. Koistinen, R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plane carbon steels, Acta Metallurgica. 7 (1959)59-60.

DOI: 10.1016/0001-6160(59)90170-1

Google Scholar

[2] T. Zedler, Numerische Modellierung, Analyse und Design von Induktiven Systemen für das Randschichthärten Komplexer Werkstück Geometrien, 1 edition, Sierke Verlag, Göttingen, (2010).

Google Scholar

[3] G. Golovin, M. Zamyatin, High frequency heat treatment, Mashinostroenie, Leningrad, (1990).

Google Scholar

[4] M. Wildau, H. Hougardy, Zur Auswirkung der Ms-Temperatur auf Spannungen und Maßänderungen, Härterei-Technische Mitteilungen. 42 (1987) 261-268.

DOI: 10.1515/htm-1987-420506

Google Scholar

[5] M. Börnsen, Zum Einfluss von Gefügeumwandlungen auf Spannungen und Formänderung bei thermischer und mechanischer Belastung, 1 edition, VDI-Verlag, Düsseldorf, (1989).

Google Scholar

[6] W. A. Johnson, R. F. Mehl, Reaction kinetics in process of nucleation and growth, Transactions of the AIME. 135 (1939) 416-458.

Google Scholar

[7] M. Avrami, Kinetics of phase change III, Journal of Chemical Physics. 9 (1941) 177-184.

Google Scholar

[8] J. B. Leblond, J. Devaux , A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size, Acta Metallurgica. 32 (1984)137-146.

DOI: 10.1016/0001-6160(84)90211-6

Google Scholar

[9] B. A. Behrens, F. W. Bach, A. Bouguecha, F. Nürnberger, M. Schaper, Z. Yu, A. Klassen, Numerische Berechnung einer integrierten Wärmebehandlung für präzisionsgeschmiedete Bauteile, Journal of Heat Treatment &Materials. 67 (2012) 337-343.

DOI: 10.3139/105.110156

Google Scholar

[10] V. Läpple, Wärmebehandlung des Stahls, 10 edition, Verlag Europa-Lehrmittel, Haan-Gruiten, (2010).

Google Scholar

[11] W. Weißbach, Werkstoffunde, 18 edition, Vieweg + Teubner, Wiesbaden,. (2012).

Google Scholar

[12] F. Wever, A. Rose, W. Peter, W. Strassburg, L. Rademacher, Atlas zur Wärmebehandlung der Stähle, Verlag Stahleisen, Düsseldorf, (1961).

Google Scholar

[13] C. Petersmann, Kondensator-Impuls-Schweißen höher kohlenstoffhaltiger, randschichtgehärteter Einsatzstähle am Beispiel eines Pkw-Sitzbeschlages, 1 edition, Shaker Verlag, Aachen, (2004).

Google Scholar