[1]
J. J. Jones, L. Mears, J.T. Roth, Empirical modeling of the stress-strain relationship for an upsetting process under direct electrical current, Transactions of the North American Manufacturing Research Institution of SME. 38 (2010) 451-458.
Google Scholar
[2]
J. Magargee, R. Fan, J. Cao, Analysis and observations of current density sensitivity and thermally activated mechanical behavior in electrically-assisted deformation, Journal of Manufacturing Science and Engineering. 135 (2013).
DOI: 10.1115/1.4025882
Google Scholar
[3]
H. Conrad, Some effects of an electric field on the plastic deformation of metals and ceramics, Mat. Res. Innovat. 2 (1998)1-8.
Google Scholar
[4]
H. Conrad, Electroplasticity in metals and ceramics, Material Science and Engineering. A287 (2000) 276-287.
Google Scholar
[5]
L. Guan, G. Tang, P.K. Chu, Recent advances and challenges in electroplastic manufacturing processing of metals, Journal of Materials Research. 7 (2010)1215-1224.
DOI: 10.1557/jmr.2010.0170
Google Scholar
[6]
W. A. Salandro, C.J. Bunget, L. Mears, A thermal based approach for determining electroplastic characteristics, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 226 (2012)775-788.
DOI: 10.1177/0954405411424696
Google Scholar
[7]
W. A. Salandro, J. J. Jones, T. A. McNeal, S. T. Hong, M. T. Smith, Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments, Journal of Manufacturing Science and Engineering. 132 (2010).
DOI: 10.1115/1.4002185
Google Scholar
[8]
E.S. Machlin, Applied voltage and the plastic properties of 'brittle', rock salt, J Appl. Phys. 30 (1959) 1109–1110.
DOI: 10.1063/1.1776988
Google Scholar
[9]
O.A. Troitskii, V.I. Likhtman, The effect of the anisotropy of electron and gradiation on the deformation of zinc single crystals in the brittle state, Dokl. Akad. Nauk. SSSR, 148 (1963)332.
Google Scholar
[10]
F.R.N. Nabarro. Theory of crystal dislocations, Chapter IX, (1967).
Google Scholar
[11]
O.A. Troitskii, A.G. Rozno, Electroplastic effects in metals, Fiz. Tverd. Tela. 12 (1970) 161.
Google Scholar
[12]
O.A. Troitskii, Rate and temperature dependence of the electroplastic effect, Fiz. Met. Metalloved, 32 (1971) 408.
Google Scholar
[13]
V.I. Spitsyn, O.A. Troitskii, Simulation of the thermal and pinch effects of pulsed current on the plastic deformation of a metal, Dokl. Akad. Nauk. 220 (1975)1070.
Google Scholar
[14]
O.A. Troitskii, V.I. Stashenko, Stress relaxation investigation of the electroplastic deformation of a metal, Fiz. Met. Metalloved. 47 (1979) 180.
Google Scholar
[15]
O.A. Troitskii, P.U. Kalymbetov, Determination of the mechanical stresses induced by current, Fiziko Metall. 51 (1981) 219.
Google Scholar
[16]
O.A. Troitskii, V.I. Stashenko, Dependence of the electroplastic effect in zinc on individual pulse lengths, Fiziko Metall. 51 (1981) 1056.
Google Scholar
[17]
V.I. Stashenko, O.A. Troitskii, Influence of pulsating current frequencies and external mechanical stress on the creep rate of crystals, Fiz. Met. Metalloved. 53 (1982) 180.
Google Scholar
[18]
V.I. Spitsyn, O.A. Troitskii, P. Ya. Glazunzov, Electroplastic deformation of metal before brittle fracture, Dokl. Akad. Nauk, 199 (1971) 810.
Google Scholar
[19]
O.A. Troitskii, I.L. Skobtsov, A.V. Menshikh, Electroplastic deformation of metal brittle rupture, Fiziko Metall. 33 (1972) 392.
Google Scholar
[20]
G.V. Karpenko, O.A. Kuzin, V.I. Tkachev, V.P. Rudenko, Effect of electric-current on low-cycle fatigue of steel, Dokl. Akad. Nauk, 227 (1976) 85.
Google Scholar
[21]
O.A. Troitskii, V.I. Spitsyn, V.G. Ryzhkov, Electroplastic drawing of steel, copper, and tungsten, Dokl. Akad. Nauk, 243 (1978) 330.
Google Scholar
[22]
Yu.I. Boyko, Ya. Ye. Geguzin, Yu.I. Klinchuk, Experimental discovery of entrainment of dislocations by an electron wind in metals, Zh. Eskp. Teor. Fiz. 30 (1979) 154.
Google Scholar
[23]
K.M. Klimov, Y.S. Burkhanov, I.I. Novikov, Effect of a high-density electric-current on the plastic-deformation of aluminum, Strength Mater. 17 (1985 782.
DOI: 10.1007/bf01528728
Google Scholar
[24]
K. Okazaki, M. Kagawa, H. Conrad, A study of the electroplastic effect in metals, Scr. Metall. 12 (1978) 1036.
Google Scholar
[25]
W.D. Cao, A.F. Sprecher, H. Conrad, Measurement of the electroplastic effect in Nb, Scr. Metall. 22 (1989) 1026.
Google Scholar
[26]
W.D. Cao, H. Conrad, Effect of stacking fault energy and temperature on the electroplastic effect in FCC metals, in Micromechanics of Advanced Materials, —A Symposium in Honor of Professor James C.M. Li's 70th birthday (Minerals, Metals & Materials Society, Warrendale, PA). (1995).
Google Scholar
[27]
P.D. Goldman, L.R. Motowidlo, G.M. Galligan, The absence of an electroplastic effect in lead at 4. 2 K, Sci. Metall. 15 (1981) 353.
DOI: 10.1016/0036-9748(81)90208-8
Google Scholar
[28]
O.A. Troitskii, Electromechanical effect in metals. Pis'maZhurnExperimTeoretFiz; 10: 18, (1969).
Google Scholar
[29]
K. Okazaki, M. Kagawa,H. Conrad, A study of the electoplastic effect in metals, ScriptaMetallurgica. 12(1978) 1063–1068.
Google Scholar
[30]
K.M. Klimov, I.I. Novikov, The 'Electroplastic Effect', A.A. Baikov Institute of Metallurgy, Acad. of Sci. of the USSR, Moscow. Trans. from ProblemyProchnosti; 2 (1982), p.98–103.
Google Scholar
[31]
Z.S. Xu, Z.H. Lai, Y.X. Chen. Effect of electric current on the recrystallization behavior of cold worked alpha- Ti. ScriptaMetallurgica; 22 (1988) 187–190.
DOI: 10.1016/s0036-9748(88)80331-4
Google Scholar
[32]
S.W. Chen, C.M. Chen W.C. Liu. Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, J Electronic Mat. 27 (1998) 1193.
DOI: 10.1007/s11664-998-0068-5
Google Scholar
[33]
H. Conrad, Thermally activated plastic flow of metals and ceramics with an electric field or current, Mat Sci&Engr. A322 (2002)100–107.
Google Scholar
[34]
J.S. Andrawes, T.J. Kronenberger, J.T. Roth et al, Effects of DC current on the mechanical behavior of AlMg1SiCu, Mat Mf Proc . 22(2007) 91–101.
DOI: 10.1080/10426910601016004
Google Scholar
[35]
T.A. Perkins, T.J. Kronenberger J.T. Roth, Metallic forging using electrical flow as an alternative to warm/hot working, J Mf Sci. Engng. 129 (2007) 84–94.
DOI: 10.1115/1.2386164
Google Scholar
[36]
C.D. Ross, D.B. Irvin J.T. Roth, Manufacturing aspects relating to the effects of DC current on the tensile proper- ties of metals, J Engr. Mat. Tech. 129(2007) 342–347.
DOI: 10.1115/1.2712470
Google Scholar
[37]
J.C. Heigel, J.S. Andrawes, J.T. Roth, M.E. Hoque, and R.M. Ford, Viability of Electrically Treating 6061 T6511 Aluminum for use in Manufacturing Processes, Trans. of the North American Manuf. Research Institute of SME. 33 (2005)145-152.
Google Scholar
[38]
J.T. Roth, I. Loker, D. Mauck, M. Warner, S.F. Golovashchenko, A. Krause, Enhanced Formability of 5754 Aluminum Sheet Metal Using Electric Pulsing, Trans. of the North American Manuf. Research Institute of SME. 36 (2008) 405-412.
Google Scholar
[39]
C.R. Green, T.A. McNeal, J.T. Roth, Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM), Trans. of the North American Manuf. Research Institute of SME. 37 (2009).
Google Scholar
[40]
W.A. Salandro J.T. Roth, Electrically-assisted manufacturing, In: Zhang W (ed) Intelligent EFM and interdisciplinary process innovations. CRC Press. (2010) 505–536.
DOI: 10.1201/ebk1420071016-c19
Google Scholar
[41]
M.I. Molotskii, Theoretical basis for electro- and magnetoplasticity, Material Science and Engineering A. A287 (2000) 248-258.
DOI: 10.1016/s0921-5093(00)00782-6
Google Scholar
[42]
M. Molotskii, V. Fleurov, Magnetic effects in electroplasticity of metals, Physical Review B 22. 52(1995).
DOI: 10.1103/physrevb.52.15829
Google Scholar
[43]
A. M. Roshchupkin, I.L. Bataronov, Physical basis of electroplastic deformation of metals, Russian Physics Journal. 3 (1996) 230-236.
DOI: 10.1007/bf02067644
Google Scholar
[44]
X. Liu., S. Lan, J Ni, Experimental study of electroplastic effect on advanced high strength steels, Material Science and Engineering. A582 (2013)211-218.
Google Scholar
[45]
Y. Zhu, S. To, X. J. Liu, Use of EBSD to study electropulsing induced reverse phase transformations in a Zn-Al based alloy, Journal of Microscopy. 242 (2011) 62-69.
DOI: 10.1111/j.1365-2818.2010.03439.x
Google Scholar
[46]
G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, Q. Li, Experimental study of electroplastic effect on stainless steel wire 304L, Material Science and Engineering. A281 (2000) 263-267.
DOI: 10.1016/s0921-5093(99)00708-x
Google Scholar