Formation of Metal-Intermetallic Laminate Composites by Spark Plasma Sintering of Metal Plates and Powder Work Pieces

Article Preview

Abstract:

Laminate composites with an intermetallic component are some of the most prospective constructional and functional materials. The basic formation method of such materials consists in heating a stack composed of metallic plates reacting at elevated temperatures to form intermetallic phases. The temperature of the process is usually approximately equal to a melting point of a more easily fusible component. In this study, an alternative technology of producing a titanium – titanium aluminide composite with a laminate structure is suggested. It consists in combining metallic (titanium and aluminum) powder mixtures pre-sintered at 400 оС with titanium plates, alternate stacking of these components and subsequent spark plasma sintering (SPS) of the fabricated workpieces. Applying this technology allowed for the fabrication of metal-intermetallic laminate (MIL) materials with an inhomogeneous structure of intermetallic interlayers. The phases revealed in the composite by X-Ray diffraction (XRD) were α-Ti, Al, Al3Ti and Al2Ti. Moreover, the results of the energy-dispersive analysis gave the evidence of the formation of Ti-enriched phases in powder layers after SPS. A small number of voids were observed between the structural components of the intermetallic layers. Voids were also detected at “metal-intermetallic” interfaces; however, the quality of connection between different layers in the composite was very high. The microhardness of an intermetallic layer formed in the composite was comparable to the microhardness of the Al3Ti compound. The microhardness of titanium was equal to 1600 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-282

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Adharapurapu, K.S. Vecchio, F. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans. A, 36 (2005).

DOI: 10.1007/s11661-005-0251-8

Google Scholar

[2] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Des., 35 (2012) 225-234.

DOI: 10.1016/j.matdes.2011.09.030

Google Scholar

[3] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavlyukova, P.S. Yartsev, E.D. Golovin, Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, Phys. Mater. Metall., 113 (2012) 947-956.

DOI: 10.1134/s0031918x12070022

Google Scholar

[4] D.J. Harach, K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A, 32 (2001) 1493-1505.

DOI: 10.1007/s11661-001-0237-0

Google Scholar

[5] F. Kong, Y. Chen, D. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Des., 32 (2011) 3167-3172.

DOI: 10.1016/j.matdes.2011.02.052

Google Scholar

[6] J.G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Materials Science and Engineering A, 379 (2004) 164-172.

DOI: 10.1016/j.msea.2004.01.021

Google Scholar

[7] G. Majkic, N. Chennoufi, Y.C. Chen, K. Salama, Synthesis of NiTi by low electrothermal loss spark plasma sintering, Metall. Mater. Trans. A, 38 (2007) 2523-2530.

DOI: 10.1007/s11661-007-9307-2

Google Scholar

[8] V.I. Mali, Lazurenko D.V., Anisimov A.G., Yartsev P.S., Formirovanie sloistyh metall-intermetallidnyh kompositsyonnyh materialov s ispol'zovaniem metoda SPS, in: Perspectivnye tehnologii konsolidatsii materialov s primeneniem electromagnitnyh poley. 3 nauchny seminar., National Research Nuclear University MEPhI, Moscow, 2014, 17-19.

Google Scholar

[9] V.I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, V.V. Bazarkina, Formation of the intermetallic layers in Ti-Al multilayer composites, Adv. Mater. Res., 2011, 236-239.

DOI: 10.4028/www.scientific.net/amr.311-313.236

Google Scholar

[10] B. Mei, Y. Miyamoto, Preparation of Ti-Al intermetallic compounds by spark plasma sintering, Metall. Mater. Trans. A, 32 (2001) 843-847.

DOI: 10.1007/s11661-001-0101-2

Google Scholar

[11] J. Oh, S.G. Pyo, S. Lee, N.J. Kim, Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment, J. Mater. Sci., 38 (2003) 3647-3651.

Google Scholar

[12] D. Pavliukova, V.I. Mali, A.A. Bataev, P.S. Yartsev, T.S. Sameyshcheva, L.I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, in: 8th International Forum on Strategic Technology 2013, IFOST 2013 - Proceedings, 2013, 183-186.

DOI: 10.1109/ifost.2013.6616967

Google Scholar

[13] L.M. Peng, H. Li, J.H. Wang, Processing and mechanical behavior of laminated titanium-titanium tri-aluminide (Ti-Al3Ti) composites, Mater. Sci. Eng., A, 406 (2005) 309-318.

DOI: 10.1016/j.msea.2005.06.067

Google Scholar

[14] L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L.H. He, Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Scripta Mater., 52 (2005) 243-248.

DOI: 10.1016/j.scriptamat.2004.09.010

Google Scholar

[15] R.D. Price, F. Jiang, R.M. Kulin, K.S. Vecchio, Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Mater. Sci. Eng., A, 528 (2011) 3134-3146.

DOI: 10.1016/j.msea.2010.12.087

Google Scholar

[16] J.C. Rawers, D.E. Alman, Fracture characteristics of metal/intermetallic laminar composites produced by reaction sintering and hot pressing, Compos. Sci. Technol., 54 (1995) 379-384.

DOI: 10.1016/0266-3538(95)00072-0

Google Scholar

[17] J.C. Rawers, W.R. Wrzesinski, Reaction-sintered hot-pressed TiAl, J. Mater. Sci., 27 (1992) 2877-2886.

DOI: 10.1007/bf01154095

Google Scholar

[18] A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites, Acta Mater., 51 (2003) 2933-2957.

DOI: 10.1016/s1359-6454(03)00108-3

Google Scholar

[19] J.C. Schuster, H. Ipser, Phases and phase relations in the partial system TiAl3-TiAl, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 81 (1990) 389-396.

DOI: 10.1515/ijmr-1990-810601

Google Scholar

[20] K.S. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, JOM, 57 (2005) 25-31.

DOI: 10.1007/s11837-005-0229-4

Google Scholar

[21] C.Y. Xü, S.S. Jia, Z.Y. Cao, Synthesis of Al-Mn-Ce alloy by the spark plasma sintering, Mater. Charact., 54 (2005) 394-398.

DOI: 10.1016/j.matchar.2004.12.006

Google Scholar

[22] Y.L. Yue, Y.S. Gong, Q. Shen, L.M. Zhang, Combustion Synthesis of γ-TiAl Intermetallic Compound Powder, Key Eng. Mater, 2003, 467-470.

DOI: 10.4028/www.scientific.net/kem.249.467

Google Scholar