[1]
R.R. Adharapurapu, K.S. Vecchio, F. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans. A, 36 (2005).
DOI: 10.1007/s11661-005-0251-8
Google Scholar
[2]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Des., 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[3]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavlyukova, P.S. Yartsev, E.D. Golovin, Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, Phys. Mater. Metall., 113 (2012) 947-956.
DOI: 10.1134/s0031918x12070022
Google Scholar
[4]
D.J. Harach, K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A, 32 (2001) 1493-1505.
DOI: 10.1007/s11661-001-0237-0
Google Scholar
[5]
F. Kong, Y. Chen, D. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Des., 32 (2011) 3167-3172.
DOI: 10.1016/j.matdes.2011.02.052
Google Scholar
[6]
J.G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Materials Science and Engineering A, 379 (2004) 164-172.
DOI: 10.1016/j.msea.2004.01.021
Google Scholar
[7]
G. Majkic, N. Chennoufi, Y.C. Chen, K. Salama, Synthesis of NiTi by low electrothermal loss spark plasma sintering, Metall. Mater. Trans. A, 38 (2007) 2523-2530.
DOI: 10.1007/s11661-007-9307-2
Google Scholar
[8]
V.I. Mali, Lazurenko D.V., Anisimov A.G., Yartsev P.S., Formirovanie sloistyh metall-intermetallidnyh kompositsyonnyh materialov s ispol'zovaniem metoda SPS, in: Perspectivnye tehnologii konsolidatsii materialov s primeneniem electromagnitnyh poley. 3 nauchny seminar., National Research Nuclear University MEPhI, Moscow, 2014, 17-19.
Google Scholar
[9]
V.I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, V.V. Bazarkina, Formation of the intermetallic layers in Ti-Al multilayer composites, Adv. Mater. Res., 2011, 236-239.
DOI: 10.4028/www.scientific.net/amr.311-313.236
Google Scholar
[10]
B. Mei, Y. Miyamoto, Preparation of Ti-Al intermetallic compounds by spark plasma sintering, Metall. Mater. Trans. A, 32 (2001) 843-847.
DOI: 10.1007/s11661-001-0101-2
Google Scholar
[11]
J. Oh, S.G. Pyo, S. Lee, N.J. Kim, Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment, J. Mater. Sci., 38 (2003) 3647-3651.
Google Scholar
[12]
D. Pavliukova, V.I. Mali, A.A. Bataev, P.S. Yartsev, T.S. Sameyshcheva, L.I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, in: 8th International Forum on Strategic Technology 2013, IFOST 2013 - Proceedings, 2013, 183-186.
DOI: 10.1109/ifost.2013.6616967
Google Scholar
[13]
L.M. Peng, H. Li, J.H. Wang, Processing and mechanical behavior of laminated titanium-titanium tri-aluminide (Ti-Al3Ti) composites, Mater. Sci. Eng., A, 406 (2005) 309-318.
DOI: 10.1016/j.msea.2005.06.067
Google Scholar
[14]
L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L.H. He, Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Scripta Mater., 52 (2005) 243-248.
DOI: 10.1016/j.scriptamat.2004.09.010
Google Scholar
[15]
R.D. Price, F. Jiang, R.M. Kulin, K.S. Vecchio, Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Mater. Sci. Eng., A, 528 (2011) 3134-3146.
DOI: 10.1016/j.msea.2010.12.087
Google Scholar
[16]
J.C. Rawers, D.E. Alman, Fracture characteristics of metal/intermetallic laminar composites produced by reaction sintering and hot pressing, Compos. Sci. Technol., 54 (1995) 379-384.
DOI: 10.1016/0266-3538(95)00072-0
Google Scholar
[17]
J.C. Rawers, W.R. Wrzesinski, Reaction-sintered hot-pressed TiAl, J. Mater. Sci., 27 (1992) 2877-2886.
DOI: 10.1007/bf01154095
Google Scholar
[18]
A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites, Acta Mater., 51 (2003) 2933-2957.
DOI: 10.1016/s1359-6454(03)00108-3
Google Scholar
[19]
J.C. Schuster, H. Ipser, Phases and phase relations in the partial system TiAl3-TiAl, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 81 (1990) 389-396.
DOI: 10.1515/ijmr-1990-810601
Google Scholar
[20]
K.S. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, JOM, 57 (2005) 25-31.
DOI: 10.1007/s11837-005-0229-4
Google Scholar
[21]
C.Y. Xü, S.S. Jia, Z.Y. Cao, Synthesis of Al-Mn-Ce alloy by the spark plasma sintering, Mater. Charact., 54 (2005) 394-398.
DOI: 10.1016/j.matchar.2004.12.006
Google Scholar
[22]
Y.L. Yue, Y.S. Gong, Q. Shen, L.M. Zhang, Combustion Synthesis of γ-TiAl Intermetallic Compound Powder, Key Eng. Mater, 2003, 467-470.
DOI: 10.4028/www.scientific.net/kem.249.467
Google Scholar