Processing and Characterization of Amorphous/Nanocrystalline Al87.5Ni4Sm8.5 Particles Reinforced Crystalline Al Matrix Composites

Article Preview

Abstract:

Metal matrix composites, in which crystalline Al was reinforced by particulates of the Al87.5Ni4Sm8.5 amorphous alloy, were produced using cold pressing and hot extrusion processing. Controlled nanoprecipitation was used to improve the mechanical properties of the amorphous alloy. Amorphous melt-spun ribbons were produced by melt-spinning technique and then fragmented in fine powder by high-energy ball milling. Amorphous and pure aluminum powders were mixed in two different proportions: 85:15 and 70:30 (wt%) and homogenized by ball milling. Bulk samples were produced via cold pressing and hot extrusion. Controlled nanoprecipitation within the amorphous alloy was obtained by the correct choice of processing temperature. The composites were analyzed for reinforcement distribution, porosity content, microhardness and compression tests. The results showed that it was possible to control the precipitation by producing almost the same volume fraction of nanocrystals in each condition. Compression tests showed an improvement on the mechanical properties, which were correlated with the presence of the amorphous/nanocrystals reinforcement in the Al-matrix. The compression yield-strengths of the as-extruded composites were 192 and 310 MPa for 15% and 30% in volume of Al87.5Ni4Sm8.5, respectively. These values are significantly higher than the typically found for the AA1100 wrought pure aluminum (180 MPa).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

444-451

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Davis, Aluminum and aluminum alloys, ASM international handbook committee, (1993).

Google Scholar

[2] A. Inoue, H.M. Kimura, K. Kita, New horizons in quasicrystals, World scientific, Singapore, (1997).

Google Scholar

[3] A. Inoue, K. Ohtera, A. -P. Tsai, T. Masumoto, New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M=Fe, Co, Ni or Cu) systems, Jpn. J. Appl. Phys. 27 (1988) L280-L282.

DOI: 10.1143/jjap.27.l280

Google Scholar

[4] Y. -H. Kim, A. Inoue, T. Masumoto, Ultrahigh tensile strengths of Al88Y2Ni9M1 (M=Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles, Mater. Trans. JIM. 31 (1990) 747-749.

DOI: 10.2320/matertrans1989.31.747

Google Scholar

[5] A. Inoue, K. Ohtera, A. -P. Tsai, H. Kimura, T. Masumoto, Glass transition Behavior of Al-Y-Ni and Al-Ce-Ni Amorphous Alloys, Jpn. J. Appl. Phys. 27 (1988) L1579-L1582.

DOI: 10.1143/jjap.27.l1579

Google Scholar

[6] Y. -H. Kim, A. Inoue, T. Masumoto, Ultrahigh mechanical strengths of Al88Y2Ni10-xMx (M=Mn, Fe or Co) amorphous alloys containing nanoscale fcc-Al particles, Mater. Trans. JIM. 32 (1991) 599-608.

DOI: 10.2320/matertrans1989.32.599

Google Scholar

[7] A.M. Jorge Jr., M.M. Peres, J.B. Fogagnolo, C.S. Kiminami, C. Bolfarini, W.J. Botta, Hot extrusion of nanostructured Al-powder alloys: grain growth control and the effect of process parameters on their microstructure and mechanical properties, Metall. Mater. Trans. 40A (2009).

DOI: 10.1007/s11661-009-9984-0

Google Scholar

[8] H. Kato, Y. Kawamura, A. Inoue, T. Masumoto, Bulk glassy Zr-based alloys prepared by consolidation of glassy alloy powders in supercooled liquid region, Mater. Sci. Eng., A. 226-228 (1997) 458-462.

DOI: 10.1016/s0921-5093(96)10664-x

Google Scholar

[9] M. Tavoosi, F. Karimzadeh, M.H. Enayati, H.S. Kim, Consolidation of amorphous Al80Fe10Ti5Ni5 powders by hot pressing, J. Nanomater. 2012 (2012) 814915: 1-10.

DOI: 10.1155/2012/814915

Google Scholar

[10] H.J. Kim, J.K. Lee, S.Y. Shin, H.G. Jeong, D.H. Kim, J.C. Bae, Cu-based bulk amorphous alloys prepared by consolidation of amorphous powders in the supercooled liquid region, Intermetallics. 12 (2004) 1109-1113.

DOI: 10.1016/j.intermet.2004.04.016

Google Scholar

[11] J.Q. Wang, X.C. Chang, W.L. Hou, Z.Q. Hu, Crystallization behaviour of Al-based amorphous alloy and nanocomposites by rapid quenching, Phil. Mag. Lett. 80 (2000) 349-357.

DOI: 10.1080/095008300176128

Google Scholar

[12] T. Gloriant, D.H. Ping, K. Hono, A.L. Greer, M.D. Baro, Nanostructured Al88Ni4Sm8 alloys investigated by transmission electron and field-ion microscopies, Mater. Sci. Eng., A. 304-306 (2001) 315-320.

DOI: 10.1016/s0921-5093(00)01523-9

Google Scholar

[13] D.H. Kim, W.T. Kim, D.H. Kim, Formation and crystallization of Al–Ni–Ti amorphous alloys, Mater. Sci. Eng., A. 385 (2004) 44-53.

DOI: 10.1016/j.msea.2004.04.016

Google Scholar

[14] K.L. Sahoo, V. Rao, A. Mitra, Crystallization kinetics in an amorphous Al-Ni-Mm-Fe alloy, Mater. T. JIM. 44 (2003) 1075-1080.

DOI: 10.2320/matertrans.44.1075

Google Scholar

[15] R.D. Sa Lisboa, C.S. Kiminami, Primary crystallization in amorphous Al84Ni8Co4Y3Zr1 alloy, J. Non-Cryst. Solids. 304 (2002) 36-43.

DOI: 10.1016/s0022-3093(02)01001-3

Google Scholar

[16] Z. Zhaog, D. Witkin, E.J. Lavernia, Crystallization behavior of a gas atomized Al85Ni10La5 amorphous alloy, J. Non-Cryst. Solids. 351 (2005) 1646-1652.

DOI: 10.1016/j.jnoncrysol.2005.04.055

Google Scholar

[17] W. Voight, Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper, Wied. Ann. 38 (1889) 573-587.

DOI: 10.1002/andp.18892741206

Google Scholar

[18] R. Dasgupta, Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications, ISRN Metallurgy. 2012 (2012) 594573: 1-14.

DOI: 10.5402/2012/594573

Google Scholar

[19] S. Skolianos, Mechanical behavior of cast SiCp-reinforced Al-4. 5%Cu-1. 5%Mg alloy, Mater. Sci. Eng., A. 210 (1996) 76-82.

DOI: 10.1016/0921-5093(95)10043-1

Google Scholar