[1]
J.R. Davis, Aluminum and aluminum alloys, ASM international handbook committee, (1993).
Google Scholar
[2]
A. Inoue, H.M. Kimura, K. Kita, New horizons in quasicrystals, World scientific, Singapore, (1997).
Google Scholar
[3]
A. Inoue, K. Ohtera, A. -P. Tsai, T. Masumoto, New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M=Fe, Co, Ni or Cu) systems, Jpn. J. Appl. Phys. 27 (1988) L280-L282.
DOI: 10.1143/jjap.27.l280
Google Scholar
[4]
Y. -H. Kim, A. Inoue, T. Masumoto, Ultrahigh tensile strengths of Al88Y2Ni9M1 (M=Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles, Mater. Trans. JIM. 31 (1990) 747-749.
DOI: 10.2320/matertrans1989.31.747
Google Scholar
[5]
A. Inoue, K. Ohtera, A. -P. Tsai, H. Kimura, T. Masumoto, Glass transition Behavior of Al-Y-Ni and Al-Ce-Ni Amorphous Alloys, Jpn. J. Appl. Phys. 27 (1988) L1579-L1582.
DOI: 10.1143/jjap.27.l1579
Google Scholar
[6]
Y. -H. Kim, A. Inoue, T. Masumoto, Ultrahigh mechanical strengths of Al88Y2Ni10-xMx (M=Mn, Fe or Co) amorphous alloys containing nanoscale fcc-Al particles, Mater. Trans. JIM. 32 (1991) 599-608.
DOI: 10.2320/matertrans1989.32.599
Google Scholar
[7]
A.M. Jorge Jr., M.M. Peres, J.B. Fogagnolo, C.S. Kiminami, C. Bolfarini, W.J. Botta, Hot extrusion of nanostructured Al-powder alloys: grain growth control and the effect of process parameters on their microstructure and mechanical properties, Metall. Mater. Trans. 40A (2009).
DOI: 10.1007/s11661-009-9984-0
Google Scholar
[8]
H. Kato, Y. Kawamura, A. Inoue, T. Masumoto, Bulk glassy Zr-based alloys prepared by consolidation of glassy alloy powders in supercooled liquid region, Mater. Sci. Eng., A. 226-228 (1997) 458-462.
DOI: 10.1016/s0921-5093(96)10664-x
Google Scholar
[9]
M. Tavoosi, F. Karimzadeh, M.H. Enayati, H.S. Kim, Consolidation of amorphous Al80Fe10Ti5Ni5 powders by hot pressing, J. Nanomater. 2012 (2012) 814915: 1-10.
DOI: 10.1155/2012/814915
Google Scholar
[10]
H.J. Kim, J.K. Lee, S.Y. Shin, H.G. Jeong, D.H. Kim, J.C. Bae, Cu-based bulk amorphous alloys prepared by consolidation of amorphous powders in the supercooled liquid region, Intermetallics. 12 (2004) 1109-1113.
DOI: 10.1016/j.intermet.2004.04.016
Google Scholar
[11]
J.Q. Wang, X.C. Chang, W.L. Hou, Z.Q. Hu, Crystallization behaviour of Al-based amorphous alloy and nanocomposites by rapid quenching, Phil. Mag. Lett. 80 (2000) 349-357.
DOI: 10.1080/095008300176128
Google Scholar
[12]
T. Gloriant, D.H. Ping, K. Hono, A.L. Greer, M.D. Baro, Nanostructured Al88Ni4Sm8 alloys investigated by transmission electron and field-ion microscopies, Mater. Sci. Eng., A. 304-306 (2001) 315-320.
DOI: 10.1016/s0921-5093(00)01523-9
Google Scholar
[13]
D.H. Kim, W.T. Kim, D.H. Kim, Formation and crystallization of Al–Ni–Ti amorphous alloys, Mater. Sci. Eng., A. 385 (2004) 44-53.
DOI: 10.1016/j.msea.2004.04.016
Google Scholar
[14]
K.L. Sahoo, V. Rao, A. Mitra, Crystallization kinetics in an amorphous Al-Ni-Mm-Fe alloy, Mater. T. JIM. 44 (2003) 1075-1080.
DOI: 10.2320/matertrans.44.1075
Google Scholar
[15]
R.D. Sa Lisboa, C.S. Kiminami, Primary crystallization in amorphous Al84Ni8Co4Y3Zr1 alloy, J. Non-Cryst. Solids. 304 (2002) 36-43.
DOI: 10.1016/s0022-3093(02)01001-3
Google Scholar
[16]
Z. Zhaog, D. Witkin, E.J. Lavernia, Crystallization behavior of a gas atomized Al85Ni10La5 amorphous alloy, J. Non-Cryst. Solids. 351 (2005) 1646-1652.
DOI: 10.1016/j.jnoncrysol.2005.04.055
Google Scholar
[17]
W. Voight, Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper, Wied. Ann. 38 (1889) 573-587.
DOI: 10.1002/andp.18892741206
Google Scholar
[18]
R. Dasgupta, Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications, ISRN Metallurgy. 2012 (2012) 594573: 1-14.
DOI: 10.5402/2012/594573
Google Scholar
[19]
S. Skolianos, Mechanical behavior of cast SiCp-reinforced Al-4. 5%Cu-1. 5%Mg alloy, Mater. Sci. Eng., A. 210 (1996) 76-82.
DOI: 10.1016/0921-5093(95)10043-1
Google Scholar