[1]
J.E. Minardi, H.N. Chuang, Performance of a black, liquid flat-plate solar collector, Solar Energy. 17 (1975) 179-183.
DOI: 10.1016/0038-092x(75)90057-2
Google Scholar
[2]
R. Bertocchi, J. Karni, A. Kribus, Experimental evaluation of a non-isothermal high temperature solar particle receiver, Energy. 29(2004) 687-700.
DOI: 10.1016/j.energy.2003.07.001
Google Scholar
[3]
N. Arai, Y. Itaya, M. Hasatani, Development of a volume heat-trap, type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium Unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiation, Solar Energy. 32(1984).
DOI: 10.1016/0038-092x(84)90048-3
Google Scholar
[4]
T. P Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, R.A. Taylor, Nanofluid-based direct absorption solar collector, Journal of Renewable and Sustainable Energy. 2(2010) 033102.
DOI: 10.1063/1.3429737
Google Scholar
[5]
X.Q. Wang and A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences. 46(2007) 1-19.
Google Scholar
[6]
R. Taylori, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi. Critical review of the novel applications and uses of nanofluids, Proceedings of the 3rd International Conference on Micro/Nanoscale Heat & Mass Transfer (2012).
DOI: 10.1115/mnhmt2012-75189
Google Scholar
[7]
H. Tyagi, P. Phelan, and R. Prasher, Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering. 131(4) (2009) 041004.
DOI: 10.1115/1.3197562
Google Scholar
[8]
R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Research Letters, 6(2011) 1-11.
DOI: 10.1186/1556-276x-6-225
Google Scholar
[9]
Y. Li, H.Q. Xie, W. Yu, and J. Li. Investigation on heat transfer performances of nanofluids in solar collector, Materials Science Forum. 694 (2011) 33-36.
DOI: 10.4028/www.scientific.net/msf.694.33
Google Scholar
[10]
P.E. Phelan, T.P. Otanicar, H. Singh, R.A. Taylor, Solar energy harvesting using nanofluids-based concentrating solar collector, Journal of Nanotechnology in Engineering and Medicine. 3 (2012) 031003.
DOI: 10.1115/1.4007387
Google Scholar
[11]
R. Saidur, T. Meng, Z. Said, M. Hasanuzzaman, A. Kamyar, Evaluation of the effect of nanofluid-based absorbers on direct solar collector, International Journal of Heat and Mass Transfer, 55 (2012) 5899-5907.
DOI: 10.1016/j.ijheatmasstransfer.2012.05.087
Google Scholar
[12]
A.K. Tiwari, P. Ghosh, J. Sarkar, Solar water heating using nanofluids-a comprehensive overview and environmental impact analysis, International Journal of Emerging Technology and Advanced Engineering, 3 (2013) 221-224.
Google Scholar
[13]
T. Yousefi, F. Veysi, E. Shojaeizadeh, S. Zinadini, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors, Renewable Energy, 39 (2012) 293-298.
DOI: 10.1016/j.renene.2011.08.056
Google Scholar
[14]
G. Colangelo, E. Favale, A. de Risi, D. Laforgia, Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications, Applied Energy, 97 (2012) 828-833.
DOI: 10.1016/j.apenergy.2011.11.026
Google Scholar
[15]
Y. Gan, L. Qiao, Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles. International Journal of Heat and Mass Transfer, 55 (2012) 5777-5782.
DOI: 10.1016/j.ijheatmasstransfer.2012.05.074
Google Scholar
[16]
L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, G. Zaccanti, Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo. Nanoscale Research Letters, 7(2012) 96-100.
DOI: 10.1186/1556-276x-7-96
Google Scholar
[17]
L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, D. Jafrancesco, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Research Letters, 6 (2011).
DOI: 10.1186/1556-276x-6-282
Google Scholar
[18]
R.S. Prasher and P.E. Phelan, Modeling of radiative, optical behavior of nanofluids based on multiple and dependent scattering theories. ASME Conference Proceedings. 2005(2005) 739-743.
DOI: 10.1115/imece2005-80302
Google Scholar
[19]
R. Prasher, Modification of planck blackbody emissive power and intensity in particulate media due to multiple and dependent scattering. Journal of Heat Transfer, 127(8) (2005) 903-910.
DOI: 10.1115/1.1928912
Google Scholar
[20]
E.D. Palik, Handbook of Optical Constants of Solids 1998: Academic Press.
Google Scholar
[21]
G.M. Hale, M.R. Querry, Optical constants of water in the 200 nm-200 μm wavelength region. Applied Optics, 12(1973) 555-563.
DOI: 10.1364/ao.12.000555
Google Scholar
[22]
D. Vollat, I. Lamparth, D. Szabo, Fluorescence from coated oxide nanoparticles, in nanophase and nanocomposite materials IV S. Materials Research Society, Boston, Massachusetts , (2001) 303-308.
Google Scholar
[23]
S.W.S. McKeever, M.S. Akselrod, L.E. Colyott, N. Agersnap Larsen, J.C. Polf, V. Whitley Characterisation of Al2O3 for use in thermally and optically stimulated luminescence dosimetry, Radiation Protection Dosimetry, 84(1999) 163-166.
DOI: 10.1093/oxfordjournals.rpd.a032709
Google Scholar
[24]
R. Mupparapu, K. Vynck, I. Malfanti, S. Vignolini, M. Burresi, P. Scudo, R. Fusco, D.S. Wiersma, Enhanced downconversion of UV light by resonant scattering of aluminum nanoparticles. Optics Letters, 37(2012) 368-370.
DOI: 10.1364/ol.37.000368
Google Scholar