Applicability of Alumina Nanofluid in Direct Absorption Solar Collectors

Article Preview

Abstract:

Alumina nanofluid has unique thermo-physical properties which make it appreciable as thermal fluid, but its high extinction coefficient is not significant enough for making it a good solar irradiation absorber. The investigation was conducted on 0.05% v/v water-based alumina nanofluid and results showed that the nanofluid is able to attenuate approximately 50% of solar energy irradiated on the earth surface. Enhancement in absorption coefficient is found very little to increase absorptivity of basefluid using Rayleigh approach. It is found that the scattering coefficient of alumina is dominating absorption coefficient. Although high value of extinction coefficient is observed as usual, scattering is found responsible for this high extinction. The Rayleigh approach cannot explain the optical behaviour of the nanofluid and dominating scattering behaviour points toward alumina nanofluids’ weak capability as radiation absorber.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

366-371

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.E. Minardi, H.N. Chuang, Performance of a black, liquid flat-plate solar collector, Solar Energy. 17 (1975) 179-183.

DOI: 10.1016/0038-092x(75)90057-2

Google Scholar

[2] R. Bertocchi, J. Karni, A. Kribus, Experimental evaluation of a non-isothermal high temperature solar particle receiver, Energy. 29(2004) 687-700.

DOI: 10.1016/j.energy.2003.07.001

Google Scholar

[3] N. Arai, Y. Itaya, M. Hasatani, Development of a volume heat-trap, type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium Unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiation, Solar Energy. 32(1984).

DOI: 10.1016/0038-092x(84)90048-3

Google Scholar

[4] T. P Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, R.A. Taylor, Nanofluid-based direct absorption solar collector, Journal of Renewable and Sustainable Energy. 2(2010) 033102.

DOI: 10.1063/1.3429737

Google Scholar

[5] X.Q. Wang and A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences. 46(2007) 1-19.

Google Scholar

[6] R. Taylori, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi. Critical review of the novel applications and uses of nanofluids, Proceedings of the 3rd International Conference on Micro/Nanoscale Heat & Mass Transfer (2012).

DOI: 10.1115/mnhmt2012-75189

Google Scholar

[7] H. Tyagi, P. Phelan, and R. Prasher, Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering. 131(4) (2009) 041004.

DOI: 10.1115/1.3197562

Google Scholar

[8] R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Research Letters, 6(2011) 1-11.

DOI: 10.1186/1556-276x-6-225

Google Scholar

[9] Y. Li, H.Q. Xie, W. Yu, and J. Li. Investigation on heat transfer performances of nanofluids in solar collector, Materials Science Forum. 694 (2011) 33-36.

DOI: 10.4028/www.scientific.net/msf.694.33

Google Scholar

[10] P.E. Phelan, T.P. Otanicar, H. Singh, R.A. Taylor, Solar energy harvesting using nanofluids-based concentrating solar collector, Journal of Nanotechnology in Engineering and Medicine. 3 (2012) 031003.

DOI: 10.1115/1.4007387

Google Scholar

[11] R. Saidur, T. Meng, Z. Said, M. Hasanuzzaman, A. Kamyar, Evaluation of the effect of nanofluid-based absorbers on direct solar collector, International Journal of Heat and Mass Transfer, 55 (2012) 5899-5907.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.087

Google Scholar

[12] A.K. Tiwari, P. Ghosh, J. Sarkar, Solar water heating using nanofluids-a comprehensive overview and environmental impact analysis, International Journal of Emerging Technology and Advanced Engineering, 3 (2013) 221-224.

Google Scholar

[13] T. Yousefi, F. Veysi, E. Shojaeizadeh, S. Zinadini, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors, Renewable Energy, 39 (2012) 293-298.

DOI: 10.1016/j.renene.2011.08.056

Google Scholar

[14] G. Colangelo, E. Favale, A. de Risi, D. Laforgia, Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications, Applied Energy, 97 (2012) 828-833.

DOI: 10.1016/j.apenergy.2011.11.026

Google Scholar

[15] Y. Gan, L. Qiao, Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles. International Journal of Heat and Mass Transfer, 55 (2012) 5777-5782.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.074

Google Scholar

[16] L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, G. Zaccanti, Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo. Nanoscale Research Letters, 7(2012) 96-100.

DOI: 10.1186/1556-276x-7-96

Google Scholar

[17] L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. Di Ninni, S. Barison, C. Pagura, F. Agresti, D. Jafrancesco, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Research Letters, 6 (2011).

DOI: 10.1186/1556-276x-6-282

Google Scholar

[18] R.S. Prasher and P.E. Phelan, Modeling of radiative, optical behavior of nanofluids based on multiple and dependent scattering theories. ASME Conference Proceedings. 2005(2005) 739-743.

DOI: 10.1115/imece2005-80302

Google Scholar

[19] R. Prasher, Modification of planck blackbody emissive power and intensity in particulate media due to multiple and dependent scattering. Journal of Heat Transfer, 127(8) (2005) 903-910.

DOI: 10.1115/1.1928912

Google Scholar

[20] E.D. Palik, Handbook of Optical Constants of Solids 1998: Academic Press.

Google Scholar

[21] G.M. Hale, M.R. Querry, Optical constants of water in the 200 nm-200 μm wavelength region. Applied Optics, 12(1973) 555-563.

DOI: 10.1364/ao.12.000555

Google Scholar

[22] D. Vollat, I. Lamparth, D. Szabo, Fluorescence from coated oxide nanoparticles, in nanophase and nanocomposite materials IV S. Materials Research Society, Boston, Massachusetts , (2001) 303-308.

Google Scholar

[23] S.W.S. McKeever, M.S. Akselrod, L.E. Colyott, N. Agersnap Larsen, J.C. Polf, V. Whitley Characterisation of Al2O3 for use in thermally and optically stimulated luminescence dosimetry, Radiation Protection Dosimetry, 84(1999) 163-166.

DOI: 10.1093/oxfordjournals.rpd.a032709

Google Scholar

[24] R. Mupparapu, K. Vynck, I. Malfanti, S. Vignolini, M. Burresi, P. Scudo, R. Fusco, D.S. Wiersma, Enhanced downconversion of UV light by resonant scattering of aluminum nanoparticles. Optics Letters, 37(2012) 368-370.

DOI: 10.1364/ol.37.000368

Google Scholar