[1]
M. Chu, M. Ganne, M.T. Caldes, E. Gautier, L. Brohan, Ferroelectric fatigue endurance of Bi4−xLaxTi3O12 thin films explained in terms of x-ray photoelectron spectroscopy, Phys. Rev. B 68 (2003) 014102.
DOI: 10.1063/1.2719013
Google Scholar
[2]
S.E. Cummins, L.E. Cross, Preparation by Sol-Gel method and characterizations of (Bi4-xLax)Ti3O12 Thin Films J. Appl. Phys. 39 (1968) 2268–2274.
Google Scholar
[3]
H.N. Lee, D. Hesse, N. Zahharov, U. Gosele, Ferroelectric and piezoelectric properties of bismuth titanate thin films grown on different bottom electrodes by soft chemical solution and microwave annealing, Science 296 (2003) 2006–(2009).
DOI: 10.1016/j.materresbull.2006.08.006
Google Scholar
[4]
H. Matsuda, S. Ito, T. Iijima, Ferroelectric distortion and electronic structure in Bi4ti3o12 Appl. Phys. Lett. 83 (2003) 5023–5025.
Google Scholar
[5]
J.K. Lee, C.H. Kim, H.S. Suh, K.S. Hong, Vibrational and dielectric properties of MnO2-doped Bismuth Layered-Structure Ferroelectrics. Appl. Phys. Lett. 80 (2002) 3593–3595.
Google Scholar
[6]
K. Kim, C. Kim, Surf. Coat. Technol tunable cell membrane mimetic surfaces prepared with a novel phospholipid polymer, 177 (2004) 770–773.
Google Scholar
[7]
D.H. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Preparation and conducting performance of LaNiO3/Ag film and its interface reaction, J. Phys. D 36 (2003) 1217–1221.
Google Scholar
[8]
R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen, D.K. Fork, Low-temperature capacitor-over-interconnect (COI) Modular FeRAM for SOC application, Appl. Phys. Lett. 63 (1993) 3592–3594.
DOI: 10.1063/1.110106
Google Scholar
[9]
Capozzoli and G. D'Elia, Global Optimization and Antennas Synthesis and Diagnosis, Part Two: Applications to Advanced Reflector Antennas Synthesis and Diagnosis Techniques, Progress In Electromagnetics Research, PIER 56. (2006) 233–261.
DOI: 10.2528/pier05032503
Google Scholar
[10]
Y. P. Zhang, Lo, K. C. Terry, and Y. Hwang, A dielectric loaded miniature antenna for microcellular and personal communications, Proc. ZEEE AP-Sym. (1995) 1152-1 155.
Google Scholar
[11]
Y. Hwang, Y. P., Zhang, G. X., Zheng, and Lo, K. C. Terry, Planar inverted-F antenna loaded with high permittivity material, Electronics Lett. 31 (1995) 1710-1712.
DOI: 10.1049/el:19951184
Google Scholar
[12]
R. K. Mongia, A. Ittipiboon, and M. Cuhaci, Low profile dielectric resonator antenna using a very high pernittivity material", Electronics Lett. 30 (1994), 1366- 1367.
DOI: 10.1049/el:19940924
Google Scholar
[13]
Y. Hwang, Y. P. Zhang, K. M. Luk, and E.K.N. Yung, Gain-enhanced mainaturised rectangular dielectric resonator antenna, Electronics Lett. (1997) 33(5), 350 – 352.
DOI: 10.1049/el:19970228
Google Scholar
[14]
S.J. Fiedziusko, Dual mode dielectric resonator loaded cavity filter, IEEE Trans., MTT-30, 9 (1982) 1311-1316.
DOI: 10.1109/tmtt.1982.1131253
Google Scholar
[15]
A. V. P. Kumar, V. Hamsakutty, J. Yohannan and K. T. Mathew, Microstripline fed cylindrical dielectric resonator antenna with a coplanar, progress in electromagnetics research, PIER 60. (2006) 143–152.
DOI: 10.2528/pier05121301
Google Scholar
[16]
Y.A. Ho and Edward K.N. Yung, Characteristics of a helical antenna with a dielectric resonator core, Asia-Pacific Microwave Conference Proceedings. 2 (1995) 600-603.
Google Scholar
[17]
J. Van Bladel, On the resonances of a dielectric resonator of very high permittivity. IEEE Transactions Microwae Theory Tech., MTT-23 (1975) 199-208.
DOI: 10.1109/tmtt.1975.1128528
Google Scholar
[18]
O. M. H. Ahmed, A. R. Sebak, and T. Denidni, Size reduction and bandwidth enhancement of a UWB hybrid dielectric resonator antenna for short range wireless communication. Progress in Electromagnetics Research Letters. 19 (2010) 19-30.
DOI: 10.2528/pierl10101404
Google Scholar