[1]
D.T. Johnson and K.A. Taconi, The glycerin glut: Options for the value added conversion of crude glycerol resulting from biodiesel production, Environ Progress, 26 (2007) 338-348.
DOI: 10.1002/ep.10225
Google Scholar
[2]
X. Wang, M. Li, S. Li, H. Wang, S. Wang, and X. Ma, Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: A comparative study of thermodynamic and experimental work, Fuel Processing Technology, 91 (2010) 1812-1818.
DOI: 10.1016/j.fuproc.2010.08.003
Google Scholar
[3]
F. Pompeo, G.F. Santori, and N.N. Nichio, Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts, Catalysis Today, 172 (2011) 183-188.
DOI: 10.1016/j.cattod.2011.05.001
Google Scholar
[4]
A. Iriondo, V.L. Barrio, J.F. Cambra, P.L. Arias, M.B. Guemez, R.M. Navarro, M.C. Sanchez-Sanchez, and J.L.G. Fierro, Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen, Catalysis Communications, 10(2009).
DOI: 10.1016/j.catcom.2009.02.004
Google Scholar
[5]
V. Chiodo, S. Freni, A. Galvagno, N. Mondello, and F. Frusteri, Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen, Applied Catalysis A: General, 381 (2010) 1-7.
DOI: 10.1016/j.apcata.2010.03.039
Google Scholar
[6]
B. Zhang, X. Tang, Y. Li, Y. Xu, and W. Shen, Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts, International Journal Hydrogen Energy, 32(13) (2007) 2367–73.
DOI: 10.1016/j.ijhydene.2006.11.003
Google Scholar
[7]
V. Nichele, M. Signoretto, F. Menegazzo, A. Gallo, V.D. Santo, G. Cruciani, and G. Cerrato, Glycerol steam reforming for nhydrogen production: Design of Ni supported catalysts, Applied Catalysis B: Environment, 111-112 (2012) 225-232.
DOI: 10.1016/j.apcatb.2011.10.003
Google Scholar
[8]
R.R. Davda, J.W. Shabaker, and R.D. Cortright, A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts, Applied Catalysis B, 56 (2005).
DOI: 10.1016/j.apcatb.2004.04.027
Google Scholar
[9]
P.V. Tuza, R.L. Manfro, N.F.P. Ribeiro and M.M.V.M. Souza, Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni-Cu catalysts derived from hydrotalcite precursors, Renewable Energy, 50 (2013) 408-414.
DOI: 10.1016/j.renene.2012.07.006
Google Scholar
[10]
C.J. Jia, Y. Liu, W. Schmidt, A.H. Lu and F. Schuth, Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein, Journal of Catalysis, 269 (2010) 71-79.
DOI: 10.1016/j.jcat.2009.10.017
Google Scholar
[11]
M. Mohamed,T. Sie Ting N.A.S. Amin T.A.T. Abdullah, R. Mat, Conversion of glycerol to methanol in the presence of zeolite based catalysts, 2011 IEEE 1st Conference on Clean Energy and Technology, (2011) 389-393.
DOI: 10.1109/cet.2011.6041503
Google Scholar
[12]
M. Kidwai, S. Bhardwaj and R. Poddar, C-Arylation reactions catalyzed byCuO-nanoparticles under ligand free conditions, Beilstein Journal of Organic Chemistry, 6(35) (2010) 1-6.
DOI: 10.3762/bjoc.6.35
Google Scholar
[13]
A. Ebshish, Z. Yaakob, B. Narayanan, A. Bshish and W.R. Wan Daud, The activity of Ni-based catalysts on steam reforming of glycerol for hydrogen production, International Journal of Integrated Engineering, 3(1) (2011) 5-8.
DOI: 10.1016/j.egypro.2012.05.067
Google Scholar
[14]
N.B. Ivana, P. Fransisco, F.S. Gerado and N.N. Nichio, Nickel catalysts applied in steam reforming of glycerol for hydrogen production, Catalysis Communications, 10(13) (2009) 1656-1660.
DOI: 10.1016/j.catcom.2009.05.003
Google Scholar