Preparation of Carbon Monoliths by a Simple Polymer Blend Technique

Article Preview

Abstract:

Porous carbon monoliths are prepared by carbonization of a simple polymer blend, in which phenolic resin (PF) as carbon precursor, polyvinyl butyral as pore former and activated carbon as conducting additive and contraction inhibitor are used to make polymer blend. The results show that the carbon monoliths, with a narrow pore size distribution with mean controlled diameters in the sub-micron/micron range, can be easily produced by controlling the stabilization temperature of the PF, the carbonization temperature, and particle diameters of the precursor powders. The pore size decrease as the stabilization temperature of the PF increases or the particle diameters of the precursor powders decreases. The electrical resistance of the carbon monoliths decreases as the carbonization temperature increases, but the average pore diameter and volume of the carbon monoliths are almost constant as the carbonization temperature increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-131

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Jüntgen. Carbon, 15 (1977) p.273.

Google Scholar

[2] R. Leboda, J. Skubiszewska-Zięba and W. Grzegorczyk. Carbon, 36 (1998) p.417.

Google Scholar

[3] O. Barbieri, M. Hahn, A. Herzog and R. Kötz. Carbon, 43 (2005) p.1303.

Google Scholar

[4] R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec. Adv. Mater., 13 (2001) p.677.

Google Scholar

[5] S. A. Al-Muhtaseb and J. A. Ritter. Adv. Mater., 15 (2003) p.101.

Google Scholar

[6] J. Lee, J. Kim and T. Hyeon. Adv. Mater., 18 (2006) p. (2073).

Google Scholar

[7] I. Tanahashi. J. Appl. Electrochem., 35 (2005) p.1067.

Google Scholar

[8] Bin Xu, Feng Wu, Shi Chen, Cunzhong Zhang, Gaoping Cao and Yusheng Yang. Electrochem. Acta, 52 (2007) p.4595.

Google Scholar

[9] Lan-Ying Xu, Zhi-Guo Shi and Yu-Qi Feng. Microporous and Mesoporous Materials, 115 (2008) p.618.

Google Scholar

[10] Zhi-Guo Shi, Yu-Qi Feng, Li Xu, Shi-Lu Da and Ming Zhang. Carbon, 41 (2003) p.2677.

Google Scholar

[11] Sonia Álvarez and Antonio B. Fuertes. Materials Letters, 61 (2007) p.2378.

Google Scholar

[12] Lifeng Wang, Sen Lin, Kaifeng Lin, Chengyang Yin, Desheng Liang, Yan Di, Peiwei Fan, Dazhen Jiang and Feng-Shou Xiao. Microporous and Mesoporous Materials, 85 (2005) p.136.

Google Scholar

[13] Zhi-Guo Shi, Yu-Qi Feng, Li Xu, Shi-Lu Da and Min Zhang. Carbon, 42 (2004) p.1677.

Google Scholar

[14] Pingyun Feng, Xianhui Bu, Galen D. Stucky and David J. Pine. J. Am. Chem. Soc., 122 (2000) p.994.

Google Scholar

[15] N. A. Melosh, P. Davidson and B. F. Chmelka. J. Am. Chem. Soc., 122 (2000) p.823.

Google Scholar

[16] Christine G. Göltner, Susanne Henke, Markus C. Weissenberger and Markus Antonietti. Angew. Chem. Int. Ed, 37 (1998) p.613.

Google Scholar

[17] Haifeng Yang, Qihui Shi, Bozhi Tian, Songhai Xie, Fuqiang Zhang, Yan Yan, Bo Tu and Dongyuan Zhao. Chem. Mater., 15(2003) p.536.

Google Scholar

[18] Nattaporn Tonanon, Adisak Siyasukh, Yunyong Wareenin, Tawatchai Charinpanitkul, Wiwut Tanthapanichakoon, Hirotomo Nishihara, Shin R. Mukai and Hajime Tamon. Carbon, 43 (2005) p.2808.

DOI: 10.1016/j.carbon.2005.05.026

Google Scholar

[19] Adisak Siyasukh, Patompong Maneeprom, Siriporn Larpkiattaworn, Nattaporn Tonanon, Wiwut Tanthapanichakoon, Hajime Tamon and Tawatchai Charinpanitkul. Carbon, 46 (2008) p.1309.

DOI: 10.1016/j.carbon.2008.05.006

Google Scholar

[20] Hsisheng Teng and Sheng-Chi Wang. Carbon, 38 (2000) p.817.

Google Scholar

[21] M.S. Chandrasekar and Malathy Pushpavanam. Electrochimica Acta, 53 (2008) p.3313.

Google Scholar

[22] Dong Chen, Jie Cheng, Yuehua Wen, Junqing Pan, Gaoping Cao and Yusheng Yang. Journal of The Electrochemical Society, 158 (2011) p. A1303.

Google Scholar