Template-Free Hydrothermal Synthesis of Octahedral Fe3O4 Microcrystals and its Magnetic Property

Article Preview

Abstract:

Well-defined Fe3O4 octahedrons have been readily realized in high yield via a simple and general hydrothermal synthesis technology free of any surfactant or template. Detailed investigations indicated that the octahedral Fe3O4 microcrystals are single crystal and were dominated by (110) surfaces. The influences of the amount of NaOH on the morphologies of the final products were investigated. The experimental results show that the high concentrations of NaOH play vital roles for the formation of octahdral Fe3O4 microcrystals. Besides, the magnetic property of the as-obtained Fe3O4 sample was evaluated as potential materials for electromagnetic device application on a vibrating sample magnetometer (VSM) at room temperature. The values of saturation magnetization and coercivity of octahedral Fe3O4 are approximately 95 emu g-1 and 197 Oe, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-147

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.Y. Ma, Q. Kuang, Z.Y. Jiang, Z.X. Xie, R.B. Huang, L.S. Zheng, Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets via a facile chemical method, Angew. Chem. Int. Ed. 47 (2008) 8901-8904.

DOI: 10.1002/anie.200802750

Google Scholar

[2] M.H. Cao, T.F. Liu, S. Gao, G.B. Sun, X.C. Wu, W. Hu, Z.L. Wang, Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism and properties, Angew. Chem., Int. Ed. 47 (2006) 4197-4201.

DOI: 10.1002/anie.200500448

Google Scholar

[3] W.T. Yao, S.H. Yu, Synthesis of semiconducting functional materials in solution: from II-VI semiconductor to inorganic/organic hybrid semiconductor nanomaterials, Adv. Funct. Mater. 18 (2008) 3357-3366.

DOI: 10.1002/adfm.200800672

Google Scholar

[4] Pamela J. Hagrman, D. Hagrman, J. Zubieta, Organic-inorganic hybrid materials: from simple coordination polymers to organodiamine-templated molybdenum oxides, Angew. Chem., Int. Ed. 38 (1999) 2638-2684.

DOI: 10.1002/(sici)1521-3773(19990917)38:18<2638::aid-anie2638>3.0.co;2-4

Google Scholar

[5] S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara, Physics of magnetic fluids, J. Magn. Magn. Mater. 65 (1987) 245-251.

DOI: 10.1016/0304-8853(87)90043-6

Google Scholar

[6] J. Lee, Y. Lee, J. Youn, H.B. Na, T. Yu, H. Kim, S. -M. Lee, Y. -M. Koo, J. H. Kwak, H.G. Park, H.N. Chang, M. Hwang, J. -G. Park, J. Kim, T. Hyeon, Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts, Small 4 (2008).

DOI: 10.1002/smll.200700456

Google Scholar

[7] Z. Li, L. Wei, M.Y. Gao, H. Lei, One-pot reaction to synthesize biocompatible magnetite nanoparticles, Adv. Mater. 17 (2005) 1001-1005.

DOI: 10.1002/adma.200401545

Google Scholar

[8] T. Hyeon, Chem. Commun. 49 (2003) 927-934.

Google Scholar

[9] L. Josephson, J.M. Perez, R. Weissleder, Magnetic nanosensors for the detection of oligonucleotide sequences, Angew. Chem. Int. Ed. 40 (2001) 3204-3206.

DOI: 10.1002/1521-3773(20010903)40:17<3204::aid-anie3204>3.0.co;2-h

Google Scholar

[10] C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, V. L. Colvin, Low‐field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314 (2006) 964-967.

DOI: 10.1126/science.1131475

Google Scholar

[11] H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen, Y.D. Li, Monodisperse magnetic single-crystal ferrite microspheres, Angew. Chem. Int. Ed. 44 (2005) 2782-2785.

DOI: 10.1002/anie.200462551

Google Scholar

[12] Y.L. Chueh, M.W. Lai, J.Q. Liang, L.J. Chou, Z. L. Wang, Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor–solid processAdv. Funct. Mater. 16 (2006) 2243-2251.

DOI: 10.1002/adfm.200600499

Google Scholar

[13] G. Zou, K. Xiong, C. Jiang, H. Li, T. Li, J. Du, Y. Qian, Fe3O4 nanocrystals with novel Fractal, J. Phys. Chem. B 109 (2005) 18356-18360.

DOI: 10.1021/jp052678c

Google Scholar

[14] D.B. Yu, X.Q. Sun, J.W. Zou, Z.R. Wang, F. Wang, K. Tang, Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres, J. Phys. Chem. B 110 (2006) 21667-21671.

DOI: 10.1021/jp0646933

Google Scholar

[15] K.C. Chin, G.L. Chong, C.K. Poh, L.H. Van, C.H. Sow, J.Y. Lin, A.T.S. Wee, Large-scale synthesis of Fe3O4 nanosheets at low temperature, J. Phys. Chem. C 111 (2007) 9136-9141.

DOI: 10.1021/jp070873g

Google Scholar

[16] L.S. Darken, R.W. Gurry, The system iron-oxygen. II. equilibrium and thermodynamics of liquid oxide and other phases, J. Am. Chem. Soc. 68 (1946) 798-816.

DOI: 10.1021/ja01209a030

Google Scholar

[17] G. Visalakski, G. Venkateswaran, S.K. Kulshreshtha, P.H. Moorphy, Compositional characteristics of magnetite synthesised from aqueous solutions at temperatures upto 523K, Mater. Res. Bull. 28 (1993) 829-836.

DOI: 10.1016/0025-5408(93)90024-8

Google Scholar

[18] D. Vollath, D.V. Szabó, R.D. Taylor, J.O. Willis, Synthesis and magnetic properties of nanostructured maghemite, J. Mater. Res. 12 (1997) 2175-2182.

DOI: 10.1557/jmr.1997.0291

Google Scholar

[19] Z.H. Zhou, J. Wang, X. Liu, Synthesis of Fe3O4 nanoparticles from emulsions, J. Mater. Chem. 11 (2001) 1704-1709.

Google Scholar

[20] R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner, Fabrication of magnetite nanorods by ultrasound irradiation, J. Appl. Phys. 89 (2001) 6324-6328.

DOI: 10.1063/1.1369408

Google Scholar

[21] Y.T. Qian, Y. Xie, C. He, J. Li, Z.Y. Chen, Hydrothermal preparation and characterization of ultrafine magnetite powders, Mater. Res. Bull. 29 (1994) 953-957.

DOI: 10.1016/0025-5408(94)90055-8

Google Scholar

[22] C.Q. Hu, Z.H. Gao, X.R. Yang, Fabrication and magnetic properties of Fe3O4 octahedra, Chem. Phys. Lett. 429 (2006) 513-517.

DOI: 10.1016/j.cplett.2006.08.041

Google Scholar

[23] X.M. Liu, S.Y. Fu, H.M. Xiao, Fabrication of octahedral magnetite microcrystals, Mater. Lett. 60 (2006) 2979-2983.

DOI: 10.1016/j.matlet.2006.02.027

Google Scholar

[24] D.E. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, H.G. Zheng, Low-temperature fabrication of MnFe2O4 octahedrons: electrochemical properties, Chem. Phys. Lett. 426 (2006) 120-123.

DOI: 10.1016/j.cplett.2006.05.100

Google Scholar

[25] D. Zhang, X. Zhang, X. Ni, J. Song, H. G. Zheng, Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route, Cryst. Growth & Des. 10 (2007) 2117-2119.

DOI: 10.1021/cg060395j

Google Scholar

[26] J. Zhang, Q. Kong, J. Du, D. Ma, G. Xi, Y. T. Qian, Formation, characterization, and magnetic properties of Fe3O4 microoctahedrons, J. Cryst. Growth. 308 (2007) 159-165.

DOI: 10.1016/j.jcrysgro.2007.06.011

Google Scholar

[28] J. Liang, L. Li, M. Luo, J. Fang, Y. Hu, Synthesis and properties of magnetite Fe3O4 via a simple hydrothermal route, Solid State Sci. 12 (2010) 1422-1425.

DOI: 10.1016/j.solidstatesciences.2010.05.022

Google Scholar

[29] W. Kim, K. Kawaguchi, N. Koshizaki, Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4, J. Appl. Phys. 93 (2003) 8032-8034.

DOI: 10.1063/1.1557337

Google Scholar

[30] Z. L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B 104 (2000) 1153-1175.

DOI: 10.1021/jp993593c

Google Scholar

[31] B.L. Lv, Z.Y. Liu, H. Tian, Y. Xu, D. Wu, Y.H. Sun, Single-crystalline dodecahedral and octodecahedral α-Fe2O3 particles synthesized by a fluoride anion–assisted hydrothermal method, Adv. Funct. Mater. 20 (2010) 3987-3996.

DOI: 10.1002/adfm.201001021

Google Scholar

[32] T. Sugimoto, S. Waki, H. Itoh, A. Muramatsu, Preparation of monodisperse platelet-type hematite particles from a highly condensed β-FeOOH suspension, Colloids Surf. A 109 (1996) 155-165.

DOI: 10.1016/0927-7757(95)03454-4

Google Scholar