A New Fuzzy Petri Net Model for Power Grid Fault Diagnosis

Article Preview

Abstract:

This paper put forward a fault diagnosis project which includes fault knowledge representation, fault diagnosis arithmetic based on comprehensive investigation and engineering practice. After that a fuzzy petri net diagnosis model is come into being and the precise diagnosis of power grid elements can be realized. The simulation results given in this paper illustrate that this fault diagnosis model can make a rapid diagnosis in complex fault situation and give the accurate result to power grid fault diagnosis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-66

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Xu and M. Kezunovic, Implementing fuzzy reasoning Petri-Nets for fault section estimation, IEEE Trans. Power Del., vol. 23, no. 2, pp.676-685, Apr. (2008).

DOI: 10.1109/tpwrd.2008.915809

Google Scholar

[2] K. L. Lo, H. S. Ng, D. M. Grant, J. Trecat. Extended fuzzy petri net models for fault diagnosis for substation automation, IEE Proc. -Gener. Transm. Distrib., vol. 146, no. 3, pp.229-234, May (1999).

DOI: 10.1049/ip-gtd:19990071

Google Scholar

[3] F. S. Wen and C. S. Chang, A new approach to time constrained fault diagnosis using the Tabu search method, J. Eng. Intell. Syst., vol. 10, no. 1, pp.19-25, (2002).

Google Scholar

[4] Z. Y. He, H. D. chiang, C. W. Li and Q. F. Zeng, Fault-section estimation in power systems based on improved optimization model and binary particle swarm optimization, in Proc. IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, Jul. (2009).

DOI: 10.1109/pes.2009.5275866

Google Scholar

[5] R. N. Mahanty and P. B. D. Gupta, Application of RBF neural network to fault classification and location in transmission lines, IEE Proc. Gener., Transmiss., Distrib., vol. 151, no. 2, pp.201-212, (2004).

DOI: 10.1049/ip-gtd:20040098

Google Scholar

[6] D. Thukaram, H. P. Khincha, and H. P. Vijaynarasimha, Artificial neural network and support vector machine approach for locating faults in radial distribution systems, IEEE Trans. Power Del., vol. 20, no. 2, pp.710-721, Apr. (2005).

DOI: 10.1109/tpwrd.2005.844307

Google Scholar

[7] Y. L. Zhu, L. M. Huo, and J. L. Lu, Bayesian network-based approach for power systems fault diagnosis, IEEE Trans. Power Del., vol. 21, no. 2, pp.634-639, Apr. (2006).

DOI: 10.1109/tpwrd.2005.858774

Google Scholar

[8] H. J. Lee, B. S. Ahn, and Y. M. Park, A fault diagnosis expert system for distribution substations, IEEE Trans. Power Del., vol. 15, no. 1, pp.92-97, Jan. (2000).

DOI: 10.1109/61.847234

Google Scholar

[9] J. C. Tan et al., fuzzy expert system for on-line fault diagnosis on a transmission network, in Proc. IEEE Power Engineering Soc. Winter Meeting, vol. 2, Jan. -Feb. 2001, pp.775-780.

DOI: 10.1109/pesw.2001.916957

Google Scholar