Parameter Effects on Dynamic Crushing Behavior of Aluminum Staggered Kelvin Cellular Metal

Article Preview

Abstract:

This paper is aimed at investigating the parameter effects on dynamic crushing behavior of staggered Kelvin cellular metal using finite element method. The geometrical characteristics of the staggered cellular structure were analyzed and the finite element model was constructed using shell elements. A full factorial Design of Experiment simulation was carried out and four individual factors including two structure characteristics of the cellular metals and two mechanical parameters of the base material were selected, namely cell edge length, cell wall thickness, yield stress and tangent modulus. Their single and interaction effects on plateau stress, densification strain and densification strain energy were mainly researched. From the results it could be seen that the structure characteristics were a little more important than the base material properties for aluminum staggered Kelvin cellular metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-389

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. J. Silva, W. C. Hayes and L. J. Gibson: Int. J. Mech. Sci. Vol. 37 (1995), pp.1161-1161.

Google Scholar

[2] M. J. Silva and L. J. Gibson: Int. J. Mech. Sci. Vol. 39 (1997), pp.549-563.

Google Scholar

[3] M. A. Fortes and M. F. Ashby: Acta Mater. Vol. 47 (1999), pp.3469-3473.

Google Scholar

[4] C. Chen, T. J. Lu and N. A. Fleck: J. Mech. Phys. Solids Vol. 47 (1999), pp.2235-2272.

Google Scholar

[5] A. Honig and W. J. Stronge: Int. J. Mech. Sci. Vol. 44 (2002), p.1665.

Google Scholar

[6] A. Honig and W. J. Stronge: Int. J. Mech. Sci. Vol. 44 (2002), p.1697.

Google Scholar

[7] D. Ruan, G. Lu, B. Wang, et al.: Int. J. Impact Eng Vol. 28 (2003), pp.161-182.

Google Scholar

[8] K. Li, X. L. Gao and J. Wang: Int. J. Solids Struct. Vol. 44 (2007), pp.5003-5026.

Google Scholar

[9] E. Andrews, W. Sanders and L. J. Gibson: Mater. Sci. Eng., A Vol. 270 (1999), pp.113-124.

Google Scholar

[10] P. R. Onck, E. W. Andrews and L. J. Gibson: Int. J. Mech. Sci. Vol. 43 (2001), pp.681-699.

Google Scholar

[11] E. W. Andrews, G. Gioux, P. Onck, et al.: Int. J. Mech. Sci. Vol. 43 (2001), pp.701-713.

Google Scholar

[12] Y. X. Gan, C. Chen and Y. P. Shen: Int. J. Solids Struct. Vol. 42 (2005), pp.6628-6642.

Google Scholar

[13] Y. Song, Z. Wang, L. Zhao, et al.: Materials & Design Vol. 31 (2010), pp.4281-4289.

Google Scholar

[14] Z. Li, J. Zhang, J. Fan, et al.: Mech. Mater. Vol. 68 (2014), pp.85-94.

Google Scholar

[15] X. B. Dang, K. He, J. H. Li, et al.: App. Mech. And Mater. Vol. 496-500 (2014), pp.2369-2374.

Google Scholar

[16] Q. M. Li: J. Cell. Plast. Vol. 42 (2006), pp.371-392.

Google Scholar