Prediction of Spherical Phase Change Material Temperature Using RBFNN Model

Article Preview

Abstract:

PCM system particularly plays an important candidate at off peak to improve thermal storage system. In this paper, predication of output temperature in integrated solar heat using RBFNN was proposed. First, a brief PCM numerical model including geometrical and operational parameters and discusses the effect this parameter on the output temperature. The working fluid temperature is uniform distributed and equal to collector output temperature. The learning data is theoretical generated by using standard solar collector integrated with 95 PCM modules. The RBFNN model has 3 input nodes representing spherical size, duct length and number of ball and two output node represented by first and last layer PCM temperature. Simulation result shows the predicted PCM temperature at first and last layer closely match with the analytical data from CFD.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-69

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Taha, H. Babus: Appl Energy Vol. 51(1995), p.277–90.

Google Scholar

[2] M.K. Murat, M.K. Kamola: Renew. and Sust. Energy Reviews, 2012; 16(4): 1999-(2040).

Google Scholar

[3] A. Mawire, M. Pherson: Applied Thermal Engineering, Vol. 5-6 (2009) pp.1086-1095.

Google Scholar

[4] C. K. Jundika, P.S. Agus, V.J. Sachin, S. M. Arun: App. Ther. Eng. Vol. 50 (2013), pp.896-907.

Google Scholar

[5] S. Ahmet, K. Ali: Energy Materials and Solar Cells, Vol. 93 (2009), pp.571-576.

Google Scholar

[6] J.J. Jurinak, S.I. Abdel-Khalik: Solar Energy, Vol. 22(1979), p.355–359.

Google Scholar

[7] L.C. Tao: AIChE Journal, Vol. 13(1967), p.165–169.

Google Scholar

[8] Y.P. Shih, T.C. Chou: Chemical Engineering Science, Vol. 26(1971), p.1787–1793.

Google Scholar

[9] C Bruno, L. Noel: Renewable and Sustainable Energy Reviews, Vol. 27(2013), pp.724-737.

Google Scholar

[10] KAR Ismail, M.M. Abugderah: Energy Conve. & Manag., Vol. 41(2000), p.1165–1190.

Google Scholar

[11] B. Zivkovic, I. Fujii I. Solar Energy, Vol. 70(2001), p.51–61.

Google Scholar

[12] A. Sari, K. Kaygusuz: Solar Energy, Vol. 72(2002), p.493–504.

Google Scholar

[13] P. Patrice, A. Cynthia, B.M. Ian, W. Adam: Renew. and Sust. Ene. Rev., Vol. 15(2011), p.3341.

Google Scholar

[14] W. Shuangmao, F. Guiyin, C. Zhi: Applied Thermal Engineering, Vol. 37(2012), pp.336-343.

Google Scholar

[15] S. Atul, V.V. Tyagi, C.R. Chen, D. Buddhi: Renew. and Sust. Ene. Rev., Vol. 13(2009), p.318.

Google Scholar

[16] K. Sarada, T. Jamie, D.G. Yogi, M.R. Muhammad, K.S. Elias: Energy and Combustion Science, Vol. 39(2013), pp.285-319.

Google Scholar

[17] M.M. Alkilani, K. Sopian, M. Sohif, M.A. Alghoul: Euro. J. of Sci. Res., Vol. 27(2009), p.334.

Google Scholar

[18] Kumar S: Neural Networks: A Class room Approach. ISBN 007-124672-X, (2005).

Google Scholar

[19] T. Kurban, E. Beşdok: Sensors, Vol. 9(2009), pp.6312-6329.

Google Scholar

[20] D.S. Broomhead, D. Lowe: Complex System, Vol. 2 (1988), p.321–355.

Google Scholar

[21] A.S. Pandya: Pattern recognition with neural networks in C++, (1995).

Google Scholar

[22] J. Park, I.W. Sandberg: Neural. Computing Journal, Vol. 5 (1993), p.305–316.

Google Scholar