Phase Characterization in Experimental Chaotic Systems

Article Preview

Abstract:

In this work we present and discuss a method for measuring the phase of chaotic systems. This method has as input a scalar time series and operates by estimating a fundamental frequency for short segments, or windows, along the whole extension of the signal. It minimizes the mean square error of fitting a sinusoidal function to the series segment. This approach does not require following the trajectory on the attractor, works well over a wide range of adjustable parameters, is of easy implementation, and is particularly appealing for experimental settings with single signal outputs since there is no need of attractor reconstruction. We demonstrate the applicability of this method on experimental time series obtained from two coupled Chua circuits.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-148

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, and C.S. Zhou. The synchronization of chaotic systems. Phys. Reports, 366: 1, January (2002).

DOI: 10.1016/s0370-1573(02)00137-0

Google Scholar

[2] Andreas Bruns. Fourier-, hilbert- and wavelet-based signal analysis: are they really different approaches? Journal of Neuroscience Methods, 137(2): 321 - 332, (2004).

DOI: 10.1016/j.jneumeth.2004.03.002

Google Scholar

[3] Leon O. Chua, Makoto Itoh, Ljupco Kocarev, and Kevin Eckert. Chaos synchronization in chua's circuit. J. of Circuits, Syst. and Comp., 3(1): 93-108, (1993).

DOI: 10.1142/s0218126693000071

Google Scholar

[4] Rosangela Follmann, Elbert E. N. Macau, and Epaminondas Rosa. Phase detection of chaos. Phys. Rev. E, 83(1): 016209, Jan (2011).

Google Scholar

[5] Rosangela Follmann, Elbert E.N. Macau, and Epaminondas Rosa Jr. Detecting phase synchronization between coupled non-phase-coherent oscillators. Phys. Let. A, 373(25): 2146 - 2153, (2009).

DOI: 10.1016/j.physleta.2009.04.037

Google Scholar

[6] Rosangela Follmann, Epaminondas Rosa, Elbert E. N. Macau, and José Roberto Castilho Piqueira. Identifying phase synchronous regimes in non-coherent and multiple scroll attractor systems. Int. J. Bifurcation and Chaos, 23(11): 1350179, (2013).

DOI: 10.1142/s0218127413501794

Google Scholar

[7] Alexander E. Hramov and Alexey A. Koronovskii. Time scale synchronization of chaotic oscillators. Physica D: Non. Phenon., 206(3-4): 252 - 264, (2005).

DOI: 10.1016/j.physd.2005.05.008

Google Scholar

[8] Christiaan Huygens. Horologium Oscillatorium. Apud F. Muguet, Parisiis, 1673.

Google Scholar

[9] M. P. Kennedy. Robust op amp realization of chua's circuit. Frequenz, 46(3-4): 66-80, (1992).

Google Scholar

[10] Jürgen Kurths, M. Carmen Romano, Marco Thiel, Grigory V. Osipov, Mikhail V. Ivanchenko, István Z. Kiss, and John L. Hudson. Synchronization analysis of coupled noncoherent oscillators. Nonlinear Dynamics, 44(1): 135-149, (2006).

DOI: 10.1007/s11071-006-1957-x

Google Scholar

[11] T. Matsumoto. A chaotic attractor from chua's circuit. IEEE Transactions on Circuit and Systems, 31(12): 1055-1058, December (1984).

DOI: 10.1109/tcs.1984.1085459

Google Scholar

[12] Choongseok Park, Robert M. Worth, and Leonid L. Rubchinsky. Fine Temporal Structure of Beta Oscillations Synchronization in Subthalamic Nucleus in Parkinson's Disease. J Neurophysiol, 103(5): 2707-2716, (2010).

DOI: 10.1152/jn.00724.2009

Google Scholar

[13] Luis M. Pecora and Thomas L. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett., 64(8): 821, February (1990).

Google Scholar

[14] T. Pereira, M. S. Baptista, and J. Kurths. General framework for phase synchronization through localized sets. Phys. Rev. E, 75(2): 026216, Feb (2007).

DOI: 10.1103/physreve.75.026216

Google Scholar

[15] A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, and J. Kurths. Phase synchronization of chaotic oscillators by external driving. Physica D, 104: 219, (1997).

DOI: 10.1016/s0167-2789(96)00301-6

Google Scholar

[16] M. C. Romano, M. Thiel, J. Kurths, I. Z. Kiss, and J. L. Hudson. Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett., 71: 237-329, (2005).

DOI: 10.1209/epl/i2005-10095-1

Google Scholar

[17] E. Rosa Jr., E. Ott, and M. H. Hess. Transition to phase synchronization of chaos. Phys. Rev. Lett, 80(8): 1642, Feb (1998).

DOI: 10.1103/physrevlett.80.1642

Google Scholar

[18] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths. Phase synchronization of chaotic oscillatiors. Phys. Rev. Lett., 76(11): 1804, March (1996).

DOI: 10.1103/physrevlett.76.1804

Google Scholar

[19] O E Rössler. An equation for continuous chaos. Phys. Lett. A, 57(5): 397, (1976).

Google Scholar

[20] Carten Schäfer, M. G. Rosenblum, A. S. Pikovsky, and J�rgen Kurths. Heartbeat synchronized with ventilation. Nature, 392: 239, (1998).

DOI: 10.1038/32567

Google Scholar

[21] C.J. Stam, T. Montez, B.F. Jones, S.A.R.B. Rombouts, Y. van der Made, Y.A.L. Pijnenburg, and Ph. Scheltens. Disturbed fluctuations of resting state eeg synchronization in alzheimer's disease. Clinical Neurophysiology, 116(3): 708- 715, (2005).

DOI: 10.1016/j.clinph.2004.09.022

Google Scholar

[22] E. F. Stone. Frequency entrainment of phase coherent attractor. Phys. Lett. A, 163(5-6): 367- 374, (1992).

Google Scholar

[23] Steven H. Strogatz and Ian Stewart. Coupled oscillators and biological synchronization. Scientific American, 269(6): 68, december (1993).

Google Scholar

[24] Ming-Chya Wu and Chin-Kun Hu. Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. Phys. Rev. E, 73: 051917, May (2006).

DOI: 10.1103/physreve.73.051917

Google Scholar

[25] Tolga Yalcinkaya and Ying-Cheng Lai. Phase characterization of chaos. Phys. Rev. Lett., 79(20): 3885-3888, Nov (1997).

Google Scholar

[26] Tomoji Yamada and Hirokazu Fujisaka. Stability theory of synchronized motion in coupledoscillator systems. Prog. of Theor. Phys., 72(5): 885, (1984).

Google Scholar