Satellite Orbit Determination Using Short Arcs of GPS Data

Article Preview

Abstract:

This work is concerned with short arcs orbit determination using GPS signals. A special case of truncated arcs assuming that GPS data is only available when the satellite carrying the GPS receiver passes over a ground tracking station is presented. The behaviour of an Extended Kalman filter (EKF) in real time satellite orbit determination using short arcs of data is analysed. The algorithm is a simplified and compact model with low computational cost, and uses the EKF to estimate the state vector, composed of position and velocity components, and GPS receiver clock parameters. The algorithm may use different step-sizes between the GPS signal measurements. Its force model in the motion equations considered the perturbations as being due to the geopotential up to the 10th order and degree of the spherical harmonics. The algorithm has been formerly qualified using raw single frequency pseudorange GPS measurements of the Topex/Poseidon (T/P) satellite, and used as reference in this work. However, the GPS data are truncated as if they had been collected by a single ground tracking station. In other words, the data are obtained only when the satellite T/P is within the viewing area of the station. The research results are presented showing the degradation of performance when compared to a full arc orbit determination.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

206-221

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. P. M. Chiaradia, H. K. Kuga, H. K., B. Y. P. L. Masago, Short arcs orbit determination using GPS, Proceedings of ICOVP-2013, 11th International Conference on Vibration Problems, Lisbon, Portugal, Sep. 9-12, (2013).

Google Scholar

[2] A. P. M. Chiaradia, H. K. Kuga, H. K, A. F. B. A. Prado, Onboard and real-time artificial satellite orbit determination using GPS, Mathematical Problems in Engineering, 2013, doi: 10. 1155/2013/530516.

DOI: 10.1155/2013/530516

Google Scholar

[3] A. P. M. Chiaradia, H. K. Kuga, A. F. B. A. Prado, Comparison between Two Methods to Calculate the Transition Matrix of Orbit Motion, Mathematical Problems in Engineering, 2012, doi: 10. 1155/2012/768973.

DOI: 10.1155/2012/768973

Google Scholar

[4] A. P. M. Chiaradia, H. K. Kuga, A. F. B. A. Prado, Single Frequency GPS measurements in real-time artificial satellite orbit determination, Acta Astronautica 53(2): 123-133, July (2003).

DOI: 10.1016/s0094-5765(02)00198-4

Google Scholar

[5] K. Gold, W. L. Bertiger, S. Wu, T. Yunck, R. Mullerschoen, G. Born, K. Larson, A study of real-time GPS orbit determination for the extreme ultraviolet explorer, National Technical Meeting Proceedings of ION, Jan., (1994).

DOI: 10.1002/j.2161-4296.1994.tb01884.x

Google Scholar

[6] L. L. Fu, E. J. Christensen, C. A. Yamarone Jr., M. Lefevre, Y. Ménard, M. Dorrer, P. Escudier, TOPEX/POSEIDON mission overview, Journal of Geophysical Research, 99(C12): 24369-24381, Dec., (1994).

DOI: 10.1029/94jc01761

Google Scholar

[7] O. Montenbruck, E. Gill, Satellite orbits – models, methods, and applications. Springer Verlag, Heidelberg, (2000).

Google Scholar

[8] E. Gill, O. Montenbruck, Th. Terzibaschian, An autonomous navigation system for the german small satellite mission BIRD, AAS/AIAA Space Flight Mechanics Meeting, AAS00-122, Jan., (2000).

Google Scholar

[9] H. J. Rim, C. E. Webb, B. E. Schutz, Comparison of GPS-based precision orbit determination approaches for ICESAT, AAS/AIAA Space Flight Mechanics Meeting, AAS00-114, Jan., (2000).

DOI: 10.2514/6.2000-4234

Google Scholar

[10] B. Haines, W. Bertiger, S. Desai, D. Kuang. T. Munson, A. Reichert, L. Young, P. Willis, Initial Orbit Determination Results for Jason-1 towards a 1-cm orbit, Proceedings of the ION GPS 2002, Portland, Oregon, USA, (2002).

DOI: 10.1002/j.2161-4296.2003.tb00327.x

Google Scholar

[11] S. B. Luthcke, N. P. Zelensky, D. D. Rowlands, F. G. Lemoine, T. A. Williams, The 1-Centimeter Orbit: Jason-1 Precision Orbit Determination Using GPS, SLR, DORIS, and Altimeter Data, Marine Geodesy, 26: 399–421, 2003. doi: 10. 1080/01490410390256727.

DOI: 10.1080/714044529

Google Scholar

[12] K. R. Choi, J. C. Ries, B. D. Tapley, JASON-1 precision orbit determination by combining SLR and DORIS with GPS tracking data, Marine Geodesy 27(1–2): 319–331, (2004).

DOI: 10.1080/01490410490465652

Google Scholar

[13] D. Kuang, Y. Bar-Sever, W. Bertiger, S. Desai, B. Haines, B. Iijima, G. Kruizinga, T. Meehan, L. Romans, Precision orbit determination for CHAMP using GPS data from BlackJack receiver, Proceedings of the ION national technical meeting 2001, Long Beach, January, (2001).

DOI: 10.1109/plans.2008.4570030

Google Scholar

[14] S. Zhu, C. Reigber, R. Koenig, Integrated adjustment of CHAMP, GRACE and GPS data, Journal of Geodesy 78(1–2): 103–108, (2004).

DOI: 10.1007/s00190-004-0379-0

Google Scholar

[15] Z. Kang, P. Nagel, R. Pastor, Precise orbit determination for GRACE, Adv. Space Research 31: 1875–1881, (2003).

DOI: 10.1016/s0273-1177(03)00159-5

Google Scholar

[16] Z. Kang, B. D. Tapley, S. Bettadpur, J. Ries, P. Nagel, R. Pastor, Precise orbit determination for the GRACE mission using only GPS data, Journal of Geodesy, 80(6): 322-331, 2006, doi: 10. 1007/s00190-006-0073-5.

DOI: 10.1007/s00190-006-0073-5

Google Scholar

[17] B. S. Lee, J. C. Yoon, Y. Hwang, J. Kim, Orbit determination system for the KOMPSAT-2 using GPS measurement data, Acta Astronautica 57(9): 747-753, 2005, doi: 10. 1016/j. actaastro. 2005. 03. 066.

DOI: 10.1016/j.actaastro.2005.03.066

Google Scholar

[18] B. S. Lee, J. S. Lee, J. H. Kima, S. P. Lee, J. C. Yoon, K. M. Roh, E. S. Park, K. H. Choi, Reconstruction of KOMPSAT-l GPS navigation solutions using GPS data generation and preprocessing program, Acta Astronautica 54: 571–576, (2004).

DOI: 10.1016/s0094-5765(03)00230-3

Google Scholar

[19] H. K. Kuga, R. R. Kondapalli, Satellite Orbit Determination: A First-Hand Experience with the First Brazilian Satellite SCD1, 44th. Congress of the IAF, Graz, Austria, October (1993).

Google Scholar

[20] V. Orlando, R. V. F. Lopes, H. K. Kuga, INPE's Flight Dynamics Team Experience throughout Four Years of SCD1 In-Orbit Operations: Main Issues, Improvements and Trends, ESA International Symposium on Spaceflight Dynamics, ESA, Darmstadt, Germany, June (1997).

Google Scholar

[21] H. K. Kuga, V. Orlando, R. V. F. Lopes, Flight Dynamics Operations During Leop for the INPE's Second Environmental Data Collecting Satellite SCD2, Journal of Brazilian Society of Mechanical Sciences and Engineering XXI: 339-344, (1999).

Google Scholar

[22] V. Orlando, H. K. Kuga, Os Satélites SCD1 e SCD2 da Missão Espacial Completa Brasileira– MECB (The satellites SCD1 and SCD2 from Full Brazilian Space Mission, in: O. C. Winter, A. F. B. A. Prado (Eds. ), A Conquista do Espaço - Do Sputnik à Missão Centenário (in portuguese), Editora Livraria da Física, São Paulo, 2007, pp.151-176.

Google Scholar

[23] H. K. Kuga, V. Orlando, Orbit Control of CBERS-1 Satellite at INPE, Proceedings of 16th International Symposium on Spaceflight Dynamics, JPL/NASA, Pasadena, USA, (2001).

Google Scholar

[24] V. Orlando, H. K. Kuga, J. Tominaga, CBERS-2 LEOP Orbit Analysis, Proceedings of 18th International Symposium on Spaceflight Dynamics, Munich, Germany, (2004).

Google Scholar

[25] INPE, http: /www. inpe. br/ Access online on 3rd Jun., (2013).

Google Scholar

[26] S. Pines, Uniform representation of the gravitational potential and its derivatives, AIAA Journal, 11(11), (1973).

DOI: 10.2514/3.50619

Google Scholar

[27] International Earth Rotation Service (IERS). 1995 IERS Annual Report. Observatoire de Paris, Paris, (1996).

Google Scholar

[28] H. W. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge, University Press, 3rd. ed., (1987).

Google Scholar