[1]
M.S. Bhatti, Riding in comfort, Part II: Evolution of automotive air conditioning, ASHRAE Journal 41 (9) (1999) 44–52.
Google Scholar
[2]
A. Kargilis, Design and development of automotive air conditioning systems, ALKAR Engineering Company, (2003).
Google Scholar
[3]
P.J. Rubas, C.W. Bullard, Factors contributing to refrigerator cycling losses, International Journal of Refrigeration 18 (3) (1995), 168–176.
DOI: 10.1016/0140-7007(94)00000-n
Google Scholar
[4]
K.A. Joudi, A.S.K. Mohammed, M.K. Aljanabi, Experimental and computer performance study of an automotive air conditioning system with alternative refrigerants, Energy Conversion and Management 44 (2003) 2959–2976.
DOI: 10.1016/s0196-8904(03)00051-7
Google Scholar
[5]
G.H. Lee, J.Y. Loo, Performance analysis and simulation of automobile air conditioning system, International Journal of Refrigeration 23 (2000) 143–254.
Google Scholar
[6]
O¨ . Kaynakli, I. Horuz, An experimental analysis of automotive air conditioning system, International Communications in Heat and Mass Transfer 30 (2) (2003) 273–284.
DOI: 10.1016/s0735-1933(03)00038-1
Google Scholar
[7]
W.C. Buck, Measurements of short-term flow processes in refrigerating systems, International Journal of Refrigeration 19(3) (1996) 181–186.
DOI: 10.1016/0140-7007(96)00087-4
Google Scholar
[8]
S.G. Kim, M.S. Kim, S.T. Ro, Experimental investigation of the performance of R22, R407C and R410A in several capillary tubes for air-conditioners, International Journal of Refrigeration 25 (5)(2002) 521–531.
DOI: 10.1016/s0140-7007(01)00039-1
Google Scholar
[9]
A.S.F. Flavio, A.S.H. Alex, D.M.S. Otavio, Experimental analysis of refrigerant mixtures flow through adiabatic capillary tubes, Experimental Thermal and Fluid Science 26 (5) (2002) 499–512.
DOI: 10.1016/s0894-1777(02)00158-9
Google Scholar
[10]
E.B. Ratts, J.S. Brown, An experimental analysis of cycling in an automotive air conditioning system, Applied Thermal Engineering 20 (2000) 1039–1058.
DOI: 10.1016/s1359-4311(99)00080-0
Google Scholar
[11]
T. Kiatsiriroat, T. Euakit, Performance analyses of an automotive air conditioning system with R22/R124/R152A refrigerant, Applied Thermal Engineering 17 (11) (1997) 1085–1097.
DOI: 10.1016/s1359-4311(97)80003-8
Google Scholar
[12]
J.M. Saiz Jabardo, W. Gonzales Mamani, M.R. Ianella, Modeling and experimental evaluation of an automotive air conditioning. system with a variable capacity compressor, International Journal of Refrigeration 25 (2002) 1157–1172.
DOI: 10.1016/s0140-7007(02)00002-6
Google Scholar
[13]
T. Schwarz, M. Galluzzi, D. Richardson, R. Radermacher, T. Dickson, I. McGregor, Model to investigate the performance of accumulators in vapor compression systems, in: 9th Int. Refrigeration and Air Conditioning Conference at Purdue, (2002).
Google Scholar
[14]
J. Gu, M. Kawaji, T. Smith-Pollard, J. Cotton, multi-channel R134a two-phase flow measurement technique for automobile air conditioning system, 4th ASME/FED & JSME Fluids Engineering Division Summer Meeting, Honolulu, Hawii, USA, July 6–10, (2003).
DOI: 10.1115/fedsm2003-45379
Google Scholar
[15]
S. Wang, J. Gu, Experimental analysis of an automotive air conditioning system with two-phase flow measurements, Proc. 10th Int. Refrigeration and Air Conditioning Conference at Purdue University, July (2004).
Google Scholar