[1]
Fei Peng, Kai-ming Liang, An-min Hu. Nano-crystal glass-ceramics obtained from high alumina coal fly ash[J]. Fuel, 2005, 84: 341-346.
DOI: 10.1016/j.fuel.2004.09.004
Google Scholar
[2]
Zheng Fang, H.D. Gesser. Recovery of gallium from coal fly ash[J]. Hydrometallurgy, 1996, 41: 187-200.
DOI: 10.1016/0304-386x(95)00055-l
Google Scholar
[3]
Beatriz Gutierrez, Carmen Pazos, Jose Coca. Recovery of gallium from coal fly ash by a dual reactive extraction process[J]. Waste Management & Research, 1997, 15: 371-382.
DOI: 10.1006/wmre.1996.0093
Google Scholar
[4]
Shang-Lin Tsai, Min-Shing Tsai. A study of the extraction of vanadium and nickel in oil-fired fly ash[J]. Resources, Conservation and Recycling, 1998, 22: 163-176.
DOI: 10.1016/s0921-3449(98)00007-x
Google Scholar
[5]
Kuniaki Murase, Ken-ichi Nishikawa, Tetsuya Ozaki et al. Recovery of vanadium, nickel and magnesium from a fly ash of bitumen-in-water emulsion by chlorination and chemical transport[J]. Journal of Alloys and Compounds, 1998, 264: 151-156.
DOI: 10.1016/s0925-8388(97)00247-8
Google Scholar
[6]
J.L. Wong, J. Qian, C.H. Chen. Nickel speciation of fly ash by phase extraction[J]. Analytics Chimica Acta, 1997, 349: 121-129.
DOI: 10.1016/s0003-2670(97)00214-6
Google Scholar
[7]
R. H Matjie, J.R. Bunt, J.H.P. van Heerden. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal[J]. Minerals Engineering, 2005, 18: 299-310.
DOI: 10.1016/j.mineng.2004.06.013
Google Scholar
[8]
D. Georgiou, V.G. Papangelakis. Sulphuric acid pressure leaching of a limonitic laterite: chemistry and kinetics[J]. Hydrometallurgy, 1998, 49: 23-46.
DOI: 10.1016/s0304-386x(98)00023-1
Google Scholar
[9]
B.I. Whittington, R.G. McDonald, J.A. Johnson et al. Pressure acid leaching of arid-region nickel laterite ore Part I: effect of water quality[J]. Hydrometallurgy, 2003, 70: 31-46.
DOI: 10.1016/s0304-386x(03)00043-4
Google Scholar
[10]
Burnet G, Murtha M J, Dunker J W. Recovery of Metals from Coal Ash[J]. Metallurgical Soc of AIME, 1985, 13(4): 747-769.
Google Scholar
[11]
Kelmers A D, Egan B Z, Seeley F G, et al. Direct Acid Dissolution of Aluminum and other Metals from Fly Ash[J]. The Metallurgical Society of AIME, 1981, 26(4): 24-81.
Google Scholar
[12]
J.A.S. Tenorio, D. C. R. Espinosa. Treatment of chromium plating process effluents with ion exchange resins[J]. Waste Management, 2001, 21: 637-642.
DOI: 10.1016/s0956-053x(00)00118-5
Google Scholar
[13]
F.K. Ho, Y. Sahai. Interfacial phenomena in molten aluminum and salt system, in: Proceedings of the Second International Symposium Recycling of Metals and Engineered Material, Warrendale, TMS, 1990, Vol. 2, 1990, pp.85-102.
Google Scholar
[14]
R.D. Peterson. Effect of salt flux additives on aluminum droplet coalescence, in: Proceedings of the Second International Symposium Recycling of Metals and Engineered Material, Warrendale, TMS, 1990, Vol. 2, 1990, pp.69-84.
Google Scholar
[15]
J.A.S. Tenorio, M.C. Carboni, D.C.R. Espinosa. Recycling of aluminum-effect of fluoride additions on the salt viscosity and on the alumina dissolution[J]. Journal of Light Metals, 2001, 1: 195-198.
DOI: 10.1016/s1471-5317(01)00013-x
Google Scholar
[16]
J. Ye, Y. Sahai. Role of molten salt flux in melting of used beverage container(UBC) scrap, in: Proceedings of the Third International Symposium Recycling of Metals and Engineered Material, Warrendale, TMS, 1995, Vol. 3, 1995, pp.639-650.
Google Scholar
[17]
R.H. Matjie, M.S. Scurrell, J. Bunt. The selective dissolution of alumina, cobalt and platinum from a calcined spent catalyst using different lixiviants[J]. Minerals Engineering, 2005, 18: 801-810.
DOI: 10.1016/j.mineng.2005.01.030
Google Scholar