The Effects of Reaction Temperature on Nanographites Supported by SiC Particles

Article Preview

Abstract:

Nanographites supported by silicon carbide (SiC) nanoparticles were prepared through one-step pyrolysis method using polycarbosilane (PCS) as the precursor at temperatures ranging from 1100°C~1400°C. The effects of reaction temperature on the morphology, microstructure and crystallinity of the graphite flakes on SiC particles were explored by means of SEM, TEM, RAMAN and XRD. The experimental results show that the desired products with core/shell structures can only be obtained at reaction temperatures higher than 1100°C. With the increase of reaction temperature (1250°C~1400°C), the thickness and the average size of sp2 domains show an incremental trend before a decline while the density and the degree of deformation continuously improve. The possible mechanism for those changes was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-176

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.W. Gao and P. Hao: Physica E Vol. 41 (2009), pp.1561-1566.

Google Scholar

[2] Y.H. Jing, L.C. Guo, Y. Sun, J. Shen and N.R. Aluru: Surf. Sci. Vol. 611 (2013), pp.80-85.

Google Scholar

[3] K.F. Mak, L. Ju, F. Wang and T.F. Heinz: Solid State Commun. Vol. 152 (2012), pp.1341-1349.

Google Scholar

[4] J. Zhao, S.S. Yang, L.Q. Chen, Z.C. Zhang and H.L. Zheng: Thin Solid Films Vol. 527 (2013), p.120–125.

Google Scholar

[5] B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning and G.D. With: Powder Technol. Vol. 221 (2012), 351–358.

Google Scholar

[6] M. Clavel, T. Poiroux, M. Mouis, L. Becerra, J.L. Thomassin, A. Zenasni, G. Lapertot, D. Rouchon and O. Faynot: Solid-State Electron. Vol. 71 (2012), pp.2-6.

DOI: 10.1016/j.sse.2011.10.011

Google Scholar

[7] B.H. Chu, C.F. Lo, J. Nicolosi, C.F. Loa, J. Nicolosia, C.Y. Changb, V Chena, W. Strupinskic, S.J. Peartonb and F. Rena: Sens. Actuators, B: Chemical Vol. 157 (2011), pp.500-503.

Google Scholar

[8] P. Miranzo, C. Ramírez, B. Román-Mansoa, L. Garzón, H.R. Gutiérrez, M. Terrones, C. Ocal, M.I. Osendi and M. Belmonte: J. Eur. Ceram. Soc. Vol., 33 (2013), p.1665–1674.

DOI: 10.1016/j.jeurceramsoc.2013.01.021

Google Scholar

[9] J.H. Hwang, M.Y. Kim, V.B. Shields and M.G. Spencer: J. Cryst. Growth. Vol. 366 (2013), p.26–30.

Google Scholar

[10] J. G. Kim, W. S. Kim, Y. H. Kim, C. H. Lim and D. J. Choi: Surf. Coat. Technol. Vol. 231 (2013), p.189–192.

Google Scholar

[11] J.S. Yu, X.G. Zhou and C.R. Zhang: Mater. Lett. Vol. 92 (2013), p.379–381.

Google Scholar

[12] A.C. Ferrari and D.M. Basko: Nature Nanotech. Vol. 46 (2013), p.235–246.

Google Scholar

[13] K. Okada, H. Kanda, S. Komatsu and S. Matsumoto: J. Appl. Phys. Vol. 88 (2000), p.1674.

Google Scholar

[14] Z.G. Cambaza, G. Yushinb, S. Osswalda, V. Mochalina and Y. Gogotsia: Carbon. 2008, 46: 841–849.

Google Scholar