Effect of Preparation Conditions on Evaluation of Porous Silicon’s Morphology and Coalition with its Optical Property

Article Preview

Abstract:

This article presents the dependence of porous silicon (PSi) morphology on preparation conditions and the coalition between morphology and optical properties. p-type (100) silicon wafers were etched in an electrolyte incorporating 1:1 (by volume) ethanol and aqueous solution of hydrofluoric acid (40 wt. %) at various etching current densities and times. Detailed information about evolution of PSi morphology with variation of preparation conditions was investigated by field emission scanning electron microscopy (FESEM) and atomic force microscope (AFM). The results have shown that the pore sizes of PSi are gradually increasing, and the thicknesses of PSi layer are increased with the speed of about 11-12 nm/s as the etching duration increased. Addition, the optimal photoluminescence of PSi is achieved in room temperature with the strongest photoluminescence spectra when the corrosion current density was 30 mA / cm2 with 30 min etching time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2667-2672

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett., 57 (1990) 1046-1048.

DOI: 10.1063/1.103561

Google Scholar

[2] V. Lehmann, U. Gösele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett., 58 (1991) 856-858.

DOI: 10.1063/1.104512

Google Scholar

[3] L. E. Brus, Size dependent development of band structure in semiconductor crystallites, Nouv. J. Chim. 11 (1987) 123.

Google Scholar

[4] R. T. Collins, P. M. Fauchet, M. A. Tischler, Porous Silicon: From Luminescence to LEDs, Phys. Today 50, 1 (1997) 24.

DOI: 10.1063/1.881650

Google Scholar

[5] A. Sa'ar, Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry, J. Nanophotonics, 3, 032501 (2009) 1-42.

DOI: 10.1117/1.3111826

Google Scholar

[6] M. J. Sailor, E. C. Wu, Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles, Adv. Funct. Mater. 19 (2009) 3195-3208.

DOI: 10.1002/adfm.200900535

Google Scholar

[7] E. J. Anglin, L. Cheng, W. R. Freeman, M. J. Sailor, Porous silicon in drug delivery devices and materials, Adv. Drug Delivery Rev. 60 (2008) 1266-1277.

DOI: 10.1016/j.addr.2008.03.017

Google Scholar

[8] J. H. Park, L. Gu, G. V Maltzahn, E. Ruoslahti, S. N. Bhatia, M. J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater. 8 (2009) 331-336.

DOI: 10.1038/nmat2398

Google Scholar

[9] S. Ferrati, A. Mack, C. Chiappini, X. Liu, A. J. Bean, M. Ferrari, R. E. Serda, Intracellular trafficking of silicon particles and logic-embedded vectors, Nanoscale 2 (2010) 1512-1520.

DOI: 10.1039/c0nr00227e

Google Scholar

[10] R. E. Serda, A. Mack, M. Pulikkathara, A. M. Zaske, C. Chiappini, J. R. Fakhoury, D. Webb, B. Godin, J. L Conyers, X. W. Liu, J. A. Bankson, M. Ferrari, Cellular association and assembly of a multistage delivery system, Small 6 (2010) 1329-1340.

DOI: 10.1002/smll.201000126

Google Scholar

[11] M. Xue, X. Zhong, Z. Shaposhnik, Y. Q. Qu, F. Tamanoi, X. F. Duan, J. I. Zink, pH-Operated Mechanized Porous Silicon Nanoparticles, J. Am. Chem. Soc. 133 (2011) 8798-8801.

DOI: 10.1021/ja201252e

Google Scholar

[12] F. Razi, A. Iraji zad, F. Rahimi, Investigation of hydrogen sensing properties and aging effects of Schottky like Pd/porous Si, Sens. Actuators B 146 (2010) 53-60.

DOI: 10.1016/j.snb.2010.01.047

Google Scholar

[13] M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jäger, W. Jäger, H. Föll, Crystal Orientation Dependence and Anisotropic Properties of Macropore Formation of p- and n-Type Silicon, J. Electrochem. Soc. 148 (2001) E267-E275.

DOI: 10.1149/1.1369378

Google Scholar

[14] J. -N. Chazalviel, F. Ozanam, N. Gabouze, S. Fellah, R. B. Wehrspohn, Quantitative Analysis of the Morphology of Macropores on Low-Doped p-Si: Minimum Resistivity, J. Electrochem. Soc. 149 (2002) C511-C520.

DOI: 10.1149/1.1507594

Google Scholar

[15] M. Christophersen, J. Carstensen, K. Voigt, H. Föll, Organic and aqueous electrolytes used for etching macro- and mesoporous silicon, Phys. Stat. Sol. 197 (2003) 34-38.

DOI: 10.1002/pssa.200306464

Google Scholar

[16] S. Lust, C. Lévy-Clément, Chemical limitations of macropore formation on medium-doped p-type silicon, J. Electrochem. Soc. 149 (2002) C338-C344.

DOI: 10.1149/1.1475688

Google Scholar

[17] D.J. Blackwood, Y. Zhang, The effect of etching temperature on the photoluminescence emitted from, and the morphology of, p-type porous silicon, Electrochim Acta 48 (2003) 623-630.

DOI: 10.1016/s0013-4686(02)00731-4

Google Scholar

[18] J. Dian, A. Macek, D. Nižňanský, I. Němec, V. Vrkoslav, T. Chvojka, I. Jelı́nek. SEM and HRTEM study of porous silicon—relationship between fabrication, morphology and optical properties, Appl. Surf. Sci. 238 (2004) 169–174.

DOI: 10.1016/j.apsusc.2004.05.218

Google Scholar

[19] R. W. Fathauer, T. George, A. Ksendzov, R. P. Vasquez, Visible luminescence from silicon wafers subjected to stain etches, Appl. Phys Lett. 60 (1992) 995-997.

DOI: 10.1063/1.106485

Google Scholar

[20] A. J. Steckl, J. Xu, H. C. Mogul, Photoluminescence from stain-etched polycrystalline Si thin films, Appl. Phys. Lett. 1993, 62, 2111-2113.

DOI: 10.1063/1.109468

Google Scholar

[21] P. McCord, S. L. Yau, A. J. Bard, Chemiluminescence of Anodized and Etched Silicon: Evidence for a Luminescent Siloxene-Like Layer on Porous Silicon, Science, 257(1992) 68-69.

DOI: 10.1126/science.257.5066.68

Google Scholar

[22] R. L. Smith, S. D. Collins, Porous silicon formation mechanisms, J. Appl. Phys. 71(1992) R1-22.

Google Scholar

[23] O. Bisi, Stefano Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep. 38 (2000) 1-126.

DOI: 10.1016/s0167-5729(99)00012-6

Google Scholar

[24] V. A. Skryshevsky, Photoluminescence of inhomogeneous porous silicon at gas adsorption, Applied Surface Science. 157 (2000) 145-150.

DOI: 10.1016/s0169-4332(99)00560-7

Google Scholar